
 C.10 Finite-State Machines C-67

To see how this works, let’s choose a data word, say, 0110, whose error correction
code is 011. Here are the four 1-bit error possibilities for this data: 1110, 0010, 0100,
and 0111. Now look at the data item with the same code (011), which is the entry
with the value 0001. If the error correction decoder received one of the four pos sible
data words with an error, it would have to choose between correcting to 0110 or 0001.
While these four words with error have only one bit changed from the correct pat tern of
0110, they each have two bits that are different from the alternate correction of 0001.
Hence, the error correction mechanism can easily choose to correct to 0110, since a
single error is a much higher probability. To see that two errors can be detected, simply
notice that all the combinations with two bits changed have a different code. The one
reuse of the same code is with three bits different, but if we correct a 2-bit error, we will
correct to the wrong value, since the decoder will assume that only a sin gle error has
occurred. If we want to correct 1-bit errors and detect, but not erroneously correct, 2-bit
errors, we need a distance-4 code.

Although we distinguished between the code and data in our explanation, in truth,
an error correction code treats the combination of code and data as a single word in
a larger code (7 bits in this example). Thus, it deals with errors in the code bits in the
same fashion as errors in the data bits.

While the above example requires n – 1 bits for n bits of data, the number of bits
required grows slowly, so that for a distance-3 code, a 64-bit word needs 7 bits and a
128-bit word needs 8. This type of code is called a Hamming code, after R. Hamming,
who described a method for creating such codes.

 C.10 Finite-State Machines.

As we saw earlier, digital logic systems can be classifi ed as combinational or
sequential. Sequential systems contain state stored in memory elements internal to
the system. Their behavior depends both on the set of inputs supplied and on the
contents of the internal memory, or state of the system. Thus, a sequential sys tem
cannot be described with a truth table. Instead, a sequential system is described as
a fi nite-state machine (or often just state machine). A fi nite-state machine has a set
of states and two functions, called the next-state function and the output function.
The set of states corresponds to all the possible values of the internal storage.
Thus, if there are n bits of storage, there are 2n states. The next-state function is a
combinational function that, given the inputs and the current state, determines the
next state of the system. The output function produces a set of outputs from the
current state and the inputs. Figure C.10.1 shows this dia grammatically.

The state machines we discuss here and in Chapter 4 are synchronous. This means
that the state changes together with the clock cycle, and a new state is computed
once every clock. Thus, the state elements are updated only on the clock edge. We
use this methodology in this section and throughout Chapter 4, and we do not

fi nite-state machine
A sequential logic
function con sisting of a
set of inputs and out puts,
a next-state function
that maps the current
state and the inputs to a
new state, and an output
function that maps the
 current state and possibly
the inputs to a set of
asserted outputs.

next-state function
A combi national function
that, given the inputs
and the current state,
determines the next state
of a fi nite-state machine.

fi nite-state machine
A sequential logic
function con sisting of a
set of inputs and out puts,
a next-state function
that maps the current
state and the inputs to a
new state, and an output
function that maps the
 current state and possibly
the inputs to a set of
asserted outputs.

next-state function
A combi national function
that, given the inputs
and the current state,
determines the next state
of a fi nite-state machine.

usually show the clock explicitly. We use state machines throughout Chapter 4 to
control the execution of the processor and the actions of the datapath.

To illustrate how a fi nite-state machine operates and is designed, let’s look at a
simple and classic example: controlling a traffi c light. (Chapters 4 and 5 contain
more detailed examples of using fi nite-state machines to control processor execu-
tion.) When a fi nite-state machine is used as a controller, the output function is
often restricted to depend on just the current state. Such a fi nite-state machine is
called a Moore machine. This is the type of fi nite-state machine we use throughout
this book. If the output function can depend on both the current state and the
current input, the machine is called a Mealy machine. These two machines are
equivalent in their capabilities, and one can be turned into the other mechanically.
The basic advantage of a Moore machine is that it can be faster, while a Mealy
machine may be smaller, since it may need fewer states than a Moore machine. In
Chapter 5, we discuss the differences in more detail and show a Verilog version of
fi nite-state control using a Mealy machine.

Our example concerns the control of a traffi c light at an intersection of a north-
south route and an east-west route. For simplicity, we will consider only the green
and red lights; adding the yellow light is left for an exercise. We want the lights to
cycle no faster than 30 seconds in each direction, so we will use a 0.033 Hz clock
so that the machine cycles between states at no faster than once every 30 seconds.
There are two output signals:

FIGURE C.10.1 A state machine consists of internal storage that contains the state and
two combinational functions: the next-state function and the output function. Often, the
output function is restricted to take only the current state as its input; this does not change the capability of
a sequential machine, but does affect its internals.

Inputs

Current state

Outputs

Clock

Next-state
function

Output
function

Next
state

C-68 Appendix C The Basics of Logic Design

 C.10 Finite-State Machines C-69

NSlite: When this signal is asserted, the light on the north-south road
is green; when this signal is deasserted, the light on the north-south road
is red.

EWlite: When this signal is asserted, the light on the east-west road is green;
when this signal is deasserted, the light on the east-west road is red.

In addition, there are two inputs:

NScar: Indicates that a car is over the detector placed in the roadbed in front
of the light on the north-south road (going north or south).

EWcar: Indicates that a car is over the detector placed in the roadbed in front
of the light on the east-west road (going east or west).

The traffi c light should change from one direction to the other only if a car is
waiting to go in the other direction; otherwise, the light should continue to show
green in the same direction as the last car that crossed the intersection.

To implement this simple traffi c light we need two states:

NSgreen: The traffi c light is green in the north-south direction.

EWgreen: The traffi c light is green in the east-west direction.

We also need to create the next-state function, which can be specifi ed with a table:

Inputs

Next stateNScar EWcar

NSgreen 0 0 NSgreen

NSgreen 0 1 EWgreen

NSgreen 1 0 NSgreen

NSgreen 1 1 EWgreen

EWgreen 0 0 EWgreen

EWgreen 0 1 EWgreen

EWgreen 1 0 NSgreen

EWgreen 1 1 NSgreen

Notice that we didn’t specify in the algorithm what happens when a car
approaches from both directions. In this case, the next-state function given above
changes the state to ensure that a steady stream of cars from one direction cannot
lock out a car in the other direction.

The fi nite-state machine is completed by specifying the output function.
Before we examine how to implement this fi nite-state machine, let’s look at a

graphical representation, which is often used for fi nite-state machines. In this rep-
resentation, nodes are used to indicate states. Inside the node we place a list of the
outputs that are active for that state. Directed arcs are used to show the next-state

■

■

■

■

■

■

function, with labels on the arcs specifying the input condition as logic functions.
Figure C.10.2 shows the graphical representation for this fi nite-state machine.

Outputs

NSlite EWlite

NSgreen 1 0

EWgreen 0 1

FIGURE C.10.2 The graphical representation of the two-state traffi c light controller. We
simplifi ed the logic functions on the state transitions. For example, the transition from NSgreen to EWgreen
in the next-state table is (

 NScar · EWcar) + (NScar · EWcar), which is equivalent to EWcar.

NSlite EWlite
NScar

NSgreen EWgreen

EWcar

EWcar NScar

A fi nite-state machine can be implemented with a register to hold the current
state and a block of combinational logic that computes the next-state function and
the output function. Figure C.10.3 shows how a fi nite-state machine with 4 bits of
state, and thus up to 16 states, might look. To implement the fi nite-state machine
in this way, we must fi rst assign state numbers to the states. This process is called
state assignment. For example, we could assign NSgreen to state 0 and EWgreen to
state 1. The state register would contain a single bit. The next-state function would
be given as

NextState = (

 CurrentState · EWcar) + (CurrentState ·

 NScar)

C-70 Appendix C The Basics of Logic Design

 C.10 Finite-State Machines C-71

where CurrentState is the contents of the state register (0 or 1) and NextState is
the output of the next-state function that will be written into the state register at
the end of the clock cycle. The output function is also simple:

NSlite =

 CurrentState

EWlite = CurrentState

The combinational logic block is often implemented using structured logic,
such as a PLA. A PLA can be constructed automatically from the next-state and
output function tables. In fact, there are computer-aided design (CAD) programs

FIGURE C.10.3 A fi nite-state machine is implemented with a state register that holds
the current state and a combinational logic block to compute the next state and output
functions. The latter two functions are often split apart and implemented with two separate blocks of logic,
which may require fewer gates.

Combinational logic

Outputs

State register

Inputs

Next state

that take either a graphical or textual representation of a fi nite-state machine and
produce an optimized implementation automatically. In Chapters 4 and 5, fi nite-
state machines were used to control processor execution. Appendix C discusses the
detailed implementation of these controllers with both PLAs and ROMs.

To show how we might write the control in Verilog, Figure C.10.4 shows a
Verilog version designed for synthesis. Note that for this simple control function, a
Mealy machine is not useful, but this style of specifi cation is used in Chapter 5 to
implement a control function that is a Mealy machine and has fewer states than the
Moore machine controller.

