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 C.1 Introduction

This appendix provides a brief discussion of the basics of logic design. It does 
not replace a course in logic design, nor will it enable you to design signifi cant 
working logic systems. If you have little or no exposure to logic design, however, 
this appendix will provide suffi cient background to understand all the material in 
this book. In addition, if you are looking to understand some of the motivation 
behind how computers are implemented, this material will serve as a useful intro-
duction. If your curiosity is aroused but not sated by this appendix, the references 
at the end provide several additional sources of information. 

Section C.2 introduces the basic building blocks of logic, namely, gates. 
Section C.3 uses these building blocks to construct simple combinational logic 
systems, which contain no memory. If you have had some exposure to logic or 
digital sys tems, you will probably be familiar with the material in these fi rst two 
sections. Section C.5 shows how to use the concepts of Sections C.2 and C.3 to 
design an ALU for the MIPS processor. Section C.6 shows how to make a fast adder, 



and may be safely skipped if you are not interested in this topic. Section C.7 is 
a short introduction to the topic of clocking, which is necessary to discuss how 
memory elements work. Section C.8 introduces memory elements, and Section C.9 
extends it to focus on random access memories; it describes both the characteris-
tics that are important to understanding how they are used in Chapter 4, and the 
background that motivates many of the aspects of memory hierarchy design in 
Chapter 5. Section C.10 describes the design and use of fi nite-state machines, 
which are  sequential logic blocks. If you intend to read Appendix D, you should 
thoroughly understand the material in Sections C.2 through C.10. If you  intend 
to read only the material on control in Chapter 4, you can skim the appendices; 
however, you should have some familiarity with all the mate rial except Section C.11. 
Section C.11 is intended for those who want a deeper understanding of clocking 
methodologies and timing. It explains the basics of how edge-triggered clocking 
works, introduces another clocking scheme, and briefl y describes the problem of 
synchronizing asynchronous inputs. 

Throughout this appendix, where it is appropriate, we also include segments 
to demonstrate how logic can be represented in Verilog, which we introduce in 
Section C.4. A more extensive and complete Verilog tutorial appears elsewhere 
on the CD. 

 C.2 Gates, Truth Tables, and Logic Equations

The electronics inside a modern computer are digital. Digital electronics operate 
with only two voltage levels of interest: a high voltage and a low voltage. All other 
voltage values are temporary and occur while transitioning between the values. 
(As we discuss later in this section, a possible pitfall in digital design is sampling a 
signal when it not clearly either high or low.) The fact that computers are digital 
is also a key reason they use binary numbers, since a binary system matches the 
underlying abstraction inherent in the electronics. In various logic families, the 
values and relationships between the two voltage values differ. Thus, rather than 
refer to the voltage levels, we talk about signals that are (logically) true, or 1, or 
are asserted; or signals that are (logically) false, or 0, or are deasserted. The values 
0 and 1 are called complements or inverses of one another. 

Logic blocks are categorized as one of two types, depending on whether they 
contain memory. Blocks without memory are called combinational; the output of 
a combinational block depends only on the current input. In blocks with memory, 
the outputs can depend on both the inputs and the value stored in memory, which 
is called the state of the logic block. In this section and the next, we will focus 
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asserted signal A signal 
that is (logically) true, or 1.

deasserted signal 
A signal that is (logically) 
false, or 0.



only on combinational logic. After introducing different memory elements in 
Section C.8, we will describe how sequential logic, which is logic including state, 
is designed. 

Truth Tables
Because a combinational logic block contains no memory, it can be completely 
specifi ed by defi ning the values of the outputs for each possible set of input values. 
Such a description is normally given as a truth table. For a logic block with n 
inputs, there are 2n entries in the truth table, since there are that many possible 
combinations of input values. Each entry specifi es the value of all the outputs for 
that particular input combination. 

Truth Tables

Consider a logic function with three inputs, A, B, and C, and three outputs, 
D, E, and F. The function is defi ned as follows: D is true if at least one input is 
true, E is true if exactly two inputs are true, and F is true only if all three inputs 
are true. Show the truth table for this function.

The truth table will contain 23 = 8 entries. Here it is:

Inputs Outputs

A B C D E F

0 0 0 0 0 0

0 0 1 1 0 0

0 1 0 1 0 0

0 1 1 1 1 0

1 0 0 1 0 0

1 0 1 1 1 0

1 1 0 1 1 0

1 1 1 1 0 1

Truth tables can completely describe any combinational logic function; how ever, 
they grow in size quickly and may not be easy to understand. Sometimes we want 
to construct a logic function that will be 0 for many input combinations, and we 
use a shorthand of specifying only the truth table entries for the nonzero outputs. 
This approach is used in Chapter 4 and Appendix D. 

combinational logic 
A logic system whose 
blocks do not contain 
memory and hence 
compute the same output 
given the same input.

sequential logic 
A group of logic elements 
that contain memory 
and hence whose value 
depends on the inputs 
as well as the current 
contents of the memory.

combinational logic 
A logic system whose 
blocks do not contain 
memory and hence 
compute the same output 
given the same input.

sequential logic 
A group of logic elements 
that contain memory 
and hence whose value 
depends on the inputs 
as well as the current 
contents of the memory.

EXAMPLEEXAMPLE

ANSWERANSWER
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Boolean Algebra
Another approach is to express the logic function with logic equations. This is 
done with the use of Boolean algebra (named after Boole, a 19th-century mathe-
matician). In Boolean algebra, all the variables have the values 0 or 1 and, in typi cal 
formulations, there are three operators:

The OR operator is written as +, as in A + B. The result of an OR operator is 
1 if either of the variables is 1. The OR operation is also called a logical sum, 
since its result is 1 if either operand is 1.

The AND operator is written as · , as in A · B. The result of an AND opera tor 
is 1 only if both inputs are 1. The AND operator is also called logical product, 
since its result is 1 only if both operands are 1. 

The unary operator NOT is written as  
__

 A . The result of a NOT operator is 1 
only if the input is 0. Applying the operator NOT to a logical value  results in 
an inversion or negation of the value (i.e., if the input is 0 the output is 1, and 
vice versa).

There are several laws of Boolean algebra that are helpful in manipulating logic 
equations.

Identity law: A + 0 = A and A · 1 = A.

Zero and One laws: A + 1 = 1 and A · 0 = 0. 

Inverse laws: A +  
__

 A  = 1 and A ·  
__

 A  = 1. 

Commutative laws: A + B = B + A and A · B = B · A. 

Associative laws: A + (B + C) = (A + B) + C and A · (B · C) = (A · B) · C.

Distributive laws: A · (B + C) = (A · B) + (A · C) and 
A + (B · C) = (A + B) · (A + C). 

In addition, there are two other useful theorems, called DeMorgan’s laws, that are 
discussed in more depth in the exercises. 

Any set of logic functions can be written as a series of equations with an output 
on the left-hand side of each equation and a formula consisting of variables and 
the three operators above on the right-hand side.

■

■

■

■

■

■

■

■

■
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Logic Equations

Show the logic equations for the logic functions, D, E, and F, described in the 
previous example.

Here’s the equation for D:

D = A + B + C 

F is equally simple:

F = A · B · C

E is a little tricky. Think of it in two parts: what must be true for E to be true 
(two of the three inputs must be true), and what cannot be true (all three 
cannot be true). Thus we can write E as

E = ((A · B) + (A · C) + (B · C)) · ( 
_______

 A · B · C )

We can also derive E by realizing that E is true only if exactly two of the inputs 
are true. Then we can write E as an OR of the three possible terms that have 
two true inputs and one false input:

E = (A · B ·  
__

 C ) + (A · C ·  
__

 B ) + (B · C ·  
__

 A )

Proving that these two expressions are equivalent is explored in the exercises. 

In Verilog, we describe combinational logic whenever possible using the assign 
statement, which is described beginning on page C-23. We can write a defi nition 
for E using the Verilog exclusive-OR operator as assign E = (A ^ B ^ C) * 
(A + B + C) * (A * B * C), which is yet another way to describe this func tion. 
D and F have even simpler representations, which are just like the corre sponding C 
code: D = A | B | C and F = A & B & C.

EXAMPLEEXAMPLE

ANSWERANSWER
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Gates
Logic blocks are built from gates that implement basic logic functions. For exam-
ple, an AND gate implements the AND function, and an OR gate implements the 
OR function. Since both AND and OR are commutative and associative, an AND 
or an OR gate can have multiple inputs, with the output equal to the AND or OR 
of all the inputs. The logical function NOT is implemented with an inverter that 
always has a single input. The standard representation of these three logic building 
blocks is shown in Figure C.2.1.

Rather than draw inverters explicitly, a common practice is to add “bubbles” 
to the inputs or outputs of a gate to cause the logic value on that input line or 
output line to be inverted. For example, Figure C.2.2 shows the logic diagram for 
the function  

_____

  
__

 A  + B,  using explicit inverters on the left and bubbled inputs and 
outputs on the right.

Any logical function can be constructed using AND gates, OR gates, and 
inver sion; several of the exercises give you the opportunity to try implementing 
some common logic functions with gates. In the next section, we’ll see how an 
implementation of any logic function can be constructed using this knowledge.

In fact, all logic functions can be constructed with only a single gate type, if that 
gate is inverting. The two common inverting gates are called NOR and NAND and 
correspond to inverted OR and AND gates, respectively. NOR and NAND gates are 
called universal, since any logic function can be built using this one gate type. The 
exercises explore this concept further. 

Are the following two logical expressions equivalent? If not, fi nd a setting of the 
variables to show they are not:

(A · B ·  
__

 C ) + (A · C ·  
__

 B ) + (B · C ·  
__

 A )

B · (A ·  
__

 C  + C ·  
__

 A )

■

■

gate A device that 
implements basic logic 
functions, such as AND 
or OR.

gate A device that 
implements basic logic 
functions, such as AND 
or OR.

NOR gate An inverted 
OR gate. 

NAND gate An inverted 
AND gate.

NOR gate An inverted 
OR gate. 

NAND gate An inverted 
AND gate.

Check 
Yourself

FIGURE C.2.1 Standard drawing for an AND gate, OR gate, and an inverter, shown from 
left to right. The signals to the left of each symbol are the inputs, while the output appears on the right. 
The AND and OR gates both have two inputs. Inverters have a single input. 

FIGURE C.2.2 Logic gate implementation of  
_______

  
__

 A  + B  using explicit inverts on the left 
and bubbled inputs and outputs on the right. This logic function can be simplifi ed to A ·  

__
 B  or in 

Verilog, A & ~ B.

A
B

A
B
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 C.3 Combinational Logic

In this section, we look at a couple of larger logic building blocks that we use 
heavily, and we discuss the design of structured logic that can be automatically 
implemented from a logic equation or truth table by a translation program. Last, 
we discuss the notion of an array of logic blocks.

Decoders
One logic block that we will use in building larger components is a decoder. The 
most common type of decoder has an n-bit input and 2n outputs, where only one 
output is asserted for each input combination. This decoder translates the n-bit 
input into a signal that corresponds to the binary value of the n-bit input. The 
outputs are thus usually numbered, say, Out0, Out1, . . . , Out2n − 1. If the value of 
the input is i, then Outi will be true and all other outputs will be false. Figure C.3.1 
shows a 3-bit decoder and the truth table. This decoder is called a 3-to-8 decoder 
since there are 3 inputs and 8 (23) outputs. There is also a logic element called an 
encoder that performs the inverse function of a decoder, taking 2n inputs and pro-
ducing an n-bit output.

decoder A logic block 
that has an n-bit input 
and 2n out puts, where 
only one output is 
asserted for each input 
 combination.

decoder A logic block 
that has an n-bit input 
and 2n out puts, where 
only one output is 
asserted for each input 
 combination.
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Inputs Outputs

12 11 10 Out7 Out6 Out5 Out4 Out3 Out2 Out1 Out0

0 0 0 0 0 0 0 0 0 0 1

0 0 1 0 0 0 0 0 0 1 0

0 1 0 0 0 0 0 0 1 0 0

0 1 1 0 0 0 0 1 0 0 0

1 0 0 0 0 0 1 0 0 0 0

1 0 1 0 0 1 0 0 0 0 0

1 1 0 0 1 0 0 0 0 0 0

1 1 1 1 0 0 0 0 0 0 0

b. The truth table for a 3-bit decoder

Decoder
3

Out0

Out1

Out2

Out3

Out4

Out5

Out6

Out7

FIGURE C.3.1 A 3-bit decoder has 3 inputs, called 12, 11, and 10, and 23 = 8 outputs, called Out0 to Out7. Only the 
output cor responding to the binary value of the input is true, as shown in the truth table. The label 3 on the input to the decoder says that the 
input signal is 3 bits wide. 

a. A 3-bit decoder



Multiplexors
One basic logic function that we use quite often in Chapter 4 is the multi plexor. 
A multiplexor might more properly be called a selector, since its output is one 
of the inputs that is selected by a control. Consider the two-input multiplexor. 
The left side of Figure C.3.2 shows this multiplexor has three inputs: two data 
val ues and a selector (or control) value. The selector value determines which of 
the inputs becomes the output. We can represent the logic function computed by 
a two-input multiplexor, shown in gate form on the right side of Figure C.3.2, as 
C = (A ·  

_
 S ) + (B · S).

Multiplexors can be created with an arbitrary number of data inputs. When 
there are only two inputs, the selector is a single signal that selects one of the inputs 
if it is true (1) and the other if it is false (0). If there are n data inputs, there will 
need to be ⎡log2n⎤ selector inputs. In this case, the multiplexor basically consists of 
three parts: 

1. A decoder that generates n signals, each indicating a different input value

2. An array of n AND gates, each combining one of the inputs with a signal 
from the decoder 

3. A single large OR gate that incorporates the outputs of the AND gates

To associate the inputs with selector values, we often label the data inputs numeri-
cally (i.e., 0, 1, 2, 3, . . . , n − 1) and interpret the data selector inputs as a binary 
number. Sometimes, we make use of a multiplexor with undecoded selector 
signals.

Multiplexors are easily represented combinationally in Verilog by using if 
expres sions. For larger multiplexors, case statements are more convenient, but care 
must be taken to synthesize combinational logic.

selector value Also 
called con trol value. The 
control  signal that is used 
to select one of the input 
values of a multiplexor 
as the output of the 
multiplexor.

selector value Also 
called con trol value. The 
control  signal that is used 
to select one of the input 
values of a multiplexor 
as the output of the 
multiplexor.

M
u
x

1

0

C

S

B

A
A

B

S

C

FIGURE C.3.2 A two-input multiplexor on the left and its implementation with gates on 
the right. The multiplexor has two data inputs (A and B), which are labeled 0 and 1, and one selector input 
(S), as well as an output C. Implementing multiplexors in Verilog requires a little more work, espe cially when 
they are wider than two inputs. We show how to do this beginning on page C-23. 
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Two-Level Logic and PLAs
As pointed out in the previous section, any logic function can be implemented 
with only AND, OR, and NOT functions. In fact, a much stronger result is true. 
Any logic function can be written in a canonical form, where every input is either 
a true or complemented variable and there are only two levels of gates—one 
being AND and the other OR—with a possible inversion on the fi nal output. Such 
a representation is called a two-level representation, and there are two forms, 
called sum of products and product of sums. A sum-of-products representation is 
a logi cal sum (OR) of products (terms using the AND operator); a product of 
sums is just the opposite. In our earlier example, we had two equations for the 
output E:

E = ((A · B) + (A · C) + (B · C)) · ( 
________

 A · B · C )

and

E = (A · B ·  
__

 C ) + (A · C ·  
__

 B ) + (B · C ·  
__

 A )

This second equation is in a sum-of-products form: it has two levels of logic and the 
only inversions are on individual variables. The fi rst equation has three levels of logic. 

Elaboration: We can also write E as a product of sums:

E =  
_______________________________

   ( 
__

 A  +  
__

 B  + C) · ( 
__

 A  +  
__

 C  + B) · ( 
__

 B  + C + A) 

To derive this form, you need to use DeMorgan’s theorems, which are discussed in the 
exercises. 

In this text, we use the sum-of-products form. It is easy to see that any logic 
function can be represented as a sum of products by constructing such a represen-
tation from the truth table for the function. Each truth table entry for which the 
function is true corresponds to a product term. The product term consists of a 
logical product of all the inputs or the complements of the inputs, depending on 
whether the entry in the truth table has a 0 or 1 corresponding to this variable. The 
logic function is the logical sum of the product terms where the function is true. 
This is more easily seen with an example.

sum of products A form 
of logical representation 
that employs a logical 
sum (OR) of products 
(terms joined using the 
AND operator).

sum of products A form 
of logical representation 
that employs a logical 
sum (OR) of products 
(terms joined using the 
AND operator).
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Sum of Products

Show the sum-of-products representation for the following truth table for D.

There are four product terms, since the function is true (1) for four different 
input combinations. These are:

 
__

 A  ·  
__

 B  · C

 
__

 A  · B ·  
__

 C 

A ·  
__

 B  ·  
__

 C 

A · B · C

Thus, we can write the function for D as the sum of these terms:

D = ( 
__

 A  ·  
__

 B  · C) + ( 
__

 A  · B ·  
__

 C ) + (A ·  
__

 B  ·  
__

 C ) + (A · B · C)

Note that only those truth table entries for which the function is true gener ate 
terms in the equation.

We can use this relationship between a truth table and a two-level representa-
tion to generate a gate-level implementation of any set of logic functions. A set of 
logic functions corresponds to a truth table with multiple output columns, as we 
saw in the example on page C-5. Each output column represents a different logic 
function, which may be directly constructed from the truth  table. 

The sum-of-products representation corresponds to a common structured-
logic implementation called a programmable logic array (PLA). A PLA has a set 
of inputs and corresponding input complements (which can be implemented with 
a set of inverters), and two stages of logic. The fi rst stage is an array of AND gates 
that form a set of product terms (sometimes called minterms); each prod uct term 
can consist of any of the inputs or their complements. The second stage is an array 
of OR gates, each of which forms a logical sum of any number of the product 
terms. Figure C.3.3 shows the basic form of a PLA. 

EXAMPLEEXAMPLE

ANSWERANSWER

programmable logic 
array (PLA) A 
structured-logic   element 
composed of a set of 
inputs and corresponding 
input complements and 
two stages of logic: the 
fi rst generating prod uct 
terms of the inputs and 
input complements, and 
the second generating 
sum terms of the product 
terms. Hence, PLAs 
implement logic functions 
as a sum of products. 

minterms Also called 
prod uct terms. A set 
of logic  inputs joined 
by conjunction (AND 
operations); the product 
terms form the fi rst 
logic stage of the 
programmable logic 
array (PLA).

programmable logic 
array (PLA) A 
structured-logic   element 
composed of a set of 
inputs and corresponding 
input complements and 
two stages of logic: the 
fi rst generating prod uct 
terms of the inputs and 
input complements, and 
the second generating 
sum terms of the product 
terms. Hence, PLAs 
implement logic functions 
as a sum of products. 

minterms Also called 
prod uct terms. A set 
of logic  inputs joined 
by conjunction (AND 
operations); the product 
terms form the fi rst 
logic stage of the 
programmable logic 
array (PLA).

Inputs Output

A B C D

0 0 0 0

0 0 1 1

0 1 0 1

0 1 1 0

1 0 0 1

1 0 1 0

1 1 0 0

1 1 1 1
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A PLA can directly implement the truth table of a set of logic functions with 
multiple inputs and outputs. Since each entry where the output is true requires 
a product term, there will be a corresponding row in the PLA. Each out put 
corresponds to a potential row of OR gates in the second stage. The number of OR 
gates corresponds to the number of truth table entries for which the output is true. 
The total size of a PLA, such as that shown in Figure C.3.3, is equal to the sum of 
the size of the AND gate array (called the AND plane) and the size of the OR gate 
array (called the OR plane). Looking at Figure C.3.3, we can see that the size of the 
AND gate array is equal to the number of inputs times the number of different 
product terms, and the size of the OR gate array is the number of outputs times the 
number of product terms. 

A PLA has two characteristics that help make it an effi cient way to implement 
a set of logic functions. First, only the truth table entries that produce a true value 
for at least one output have any logic gates associated with them. Second, each dif-
ferent product term will have only one entry in the PLA, even if the product term 
is used in multiple outputs. Let’s look at an example.

PLAs

Consider the set of logic functions defi ned in the example on page C-5. Show 
a PLA implementation of this example for D, E, and F. EXAMPLEEXAMPLE
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FIGURE C.3.3 The basic form of a PLA consists of an array of AND gates followed by 
an array of OR gates. Each entry in the AND gate array is a product term consisting of any number of 
inputs or inverted inputs. Each entry in the OR gate array is a sum term consisting of any number of these 
product terms. 

AND gates

OR gates

Product terms

Outputs

Inputs



Here is the truth table we constructed earlier:
ANSWERANSWER

Inputs Outputs

A B C D E F

0 0 0 0 0 0

0 0 1 1 0 0

0 1 0 1 0 0

0 1 1 1 1 0

1 0 0 1 0 0

1 0 1 1 1 0

1 1 0 1 1 0

1 1 1 1 0 1

Since there are seven unique product terms with at least one true value in the 
output section, there will be seven columns in the AND plane. The number of 
rows in the AND plane is three (since there are three inputs), and there are also 
three rows in the OR plane (since there are three outputs). Figure C.3.4 shows 
the resulting PLA, with the product terms corresponding to the truth table 
entries from top to bottom.

Rather than drawing all the gates, as we do in Figure C.3.4, designers often show 
just the position of AND gates and OR gates. Dots are used on the intersec tion of a 
product term signal line and an input line or an output line when a cor responding 
AND gate or OR gate is required. Figure C.3.5 shows how the PLA of Figure C.3.4 
would look when drawn in this way. The contents of a PLA are fi xed when the PLA 
is created, although there are also forms of PLA-like structures, called PALs, that 
can be programmed electronically when a designer is ready to use them.

ROMs
Another form of structured logic that can be used to implement a set of logic func-
tions is a read-only memory (ROM). A ROM is called a memory because it has 
a set of locations that can be read; however, the contents of these locations are 
fi xed, usually at the time the ROM is manufactured. There are also programma ble 
ROMs (PROMs) that can be programmed electronically, when a designer knows 
their contents. There are also erasable PROMs; these devices require a slow erasure 
process using ultraviolet light, and thus are used as read-only memories, except 
during the design and debugging process. 

A ROM has a set of input address lines and a set of outputs. The number of 
addressable entries in the ROM determines the number of address lines: if the 

read-only memory 
(ROM) A memory 
whose contents are 
designated at creation 
time, after which the 
contents can only be read. 
ROM is used as structured 
logic to implement a 
set of logic functions by 
using the terms in the 
logic functions as address 
inputs and the out puts as 
bits in each word of the 
memory. 

programmable ROM 
(PROM) A form of 
read-only memory that 
can be pro grammed 
when a designer knows its 
contents.

read-only memory 
(ROM) A memory 
whose contents are 
designated at creation 
time, after which the 
contents can only be read. 
ROM is used as structured 
logic to implement a 
set of logic functions by 
using the terms in the 
logic functions as address 
inputs and the out puts as 
bits in each word of the 
memory. 

programmable ROM 
(PROM) A form of 
read-only memory that 
can be pro grammed 
when a designer knows its 
contents.
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