Tempo di esecuzione e Analisi asintotica

Corso di Algoritmi

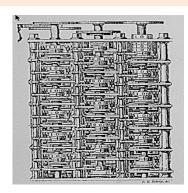
Progettazione e analisi di algoritmi

- Progettazione: tecnica Divide-et-impera,
 Greedy, Programmazione dinamica
- Analisi «asintotica» delle risorse utilizzate: spazio e tempo.

Computational Tractability

As soon as an Analytic Engine exists, it will necessarily guide the future course of the science. Whenever any result is sought by its aid, the question will arise - By what course of calculation can these results be arrived at by the machine in the shortest time? - Charles Babbage

Charles Babbage (1864)



Analytic Engine (schematic)

Tempo di esecuzione

Cosa significa?

Esempio: ricerca del massimo fra n numeri $a_1, ..., a_n$.

Un algoritmo:

```
    \text{max} \leftarrow a_1 \\
    \text{for } i = 2 \text{ to n } \{ \\
    \text{if } (a_i > \text{max}) \\
    \text{max} \leftarrow a_i \\
    \}
```

Quale il tempo di esecuzione?

- Numero di secondi?
- Implementato con quale struttura dati, linguaggio, macchina, compilatore....?
- Su quanti numeri? 100, 1.000, 1.000.000?

Analisi asintotica

Vogliamo analizzare l'efficienza dell'algoritmo

- Indipendentemente da implementazione, hardware etc.
- Al crescere della taglia dell'input

Studieremo il tempo in funzione della taglia dell'input : T(n) Studieremo la crescita della funzione T(n) al crescere di n

Analisi «asintotica»:

- per n arbitrariamente grande
- per n che tende a infinito
- da un certo punto in poi
- per ogni $n \ge n_0$

Vantaggi dell'analisi asintotica

- Indipendente da hardware
- Effettuabile con pseudocodice prima di implementare l'algoritmo
- Considera infiniti input

Alternativa? Analisi su dati campione.

Svantaggi: bisogna avere già implementato l'algoritmo; analizza numero finito di dati

Casi di interesse

Esempio: problema dell'ordinamento

INPUT: n numeri $a_1, ..., a_n$

OUTPUT: permutazione dei numeri in cui ogni numero sia minore del

successivo

Esistono svariati algoritmi che lo risolvono

Qual è il tempo di esecuzione per ordinare **n** elementi con un fissato algoritmo (per esempio InsertionSort)?

Può dipendere dalla distribuzione dei numeri fra di loro

(es.: sono già ordinati, sono ordinati in senso inverso, sono tutti uguali, etc.)

Caso peggiore, migliore, medio

Analisi del caso peggiore: qualunque sia la distribuzione dell'input T(n) è limitata superiormente da f(n)

Analisi del caso migliore: qualunque sia la distribuzione dell'input T(n) è limitata inferiormente da g(n) (poco significativa)

Analisi del caso medio: nel caso di una distribuzione media o random (difficile da determinare)

Worst-Case Analysis

- Worst case running time. Obtain bound on largest possible running time of algorithm on input of a given size N.
 - Generally captures efficiency in practice.
 - Draconian view, but hard to find effective alternative.

- Average case running time. Obtain bound on running time of algorithm on random input as a function of input size N.
 - Hard (or impossible) to accurately model real instances by random distributions.
 - Algorithm tuned for a certain distribution may perform poorly on other inputs.

efficiente?

Quando un algoritmo può essere considerato

Polynomial-Time

- Brute force. For many non-trivial problems, there is a natural brute force search algorithm that checks every possible solution.
 - Typically takes 2^N time or worse for inputs of size N.
 - Unacceptable in practice.
- Desirable scaling property. When the input size doubles, the algorithm should only slow down by some constant factor C.

There exists constants c > 0 and d > 0 such that on every input of size N, its running time is bounded by $c N^d$ steps.

Def. An algorithm is poly-time if the above scaling property holds.

choose C = 2^d

scheduling

Worst-Case Polynomial-Time

- Def. An algorithm is efficient if its running time is polynomial.
- Justification: It really works in practice!
 - Although $6.02 \times 10^{23} \times N^{20}$ is technically poly-time, it would be useless in practice.
 - In practice, the poly-time algorithms that people develop almost always have low constants and low exponents.
 - Breaking through the exponential barrier of brute force typically exposes some crucial structure of the problem.
- Exceptions.
 - Some poly-time algorithms do have high constants and/or exponents, and are useless in practice.
 - Some exponential-time (or worse) algorithms are widely used because the worst-case instances seem to be rare.

simplex method Unix grep

Why It Matters

Table 2.1 The running times (rounded up) of different algorithms on inputs of increasing size, for a processor performing a million high-level instructions per second. In cases where the running time exceeds 10^{25} years, we simply record the algorithm as taking a very long time.

	п	$n \log_2 n$	n^2	n^3	1.5 ⁿ	2 ⁿ	n!
n = 10	< 1 sec	< 1 sec	< 1 sec	< 1 sec	< 1 sec	< 1 sec	4 sec
n = 30	< 1 sec	< 1 sec	< 1 sec	< 1 sec	< 1 sec	18 min	10^{25} years
n = 50	< 1 sec	< 1 sec	< 1 sec	< 1 sec	11 min	36 years	very long
n = 100	< 1 sec	< 1 sec	< 1 sec	1 sec	12,892 years	10^{17} years	very long
n = 1,000	< 1 sec	< 1 sec	1 sec	18 min	very long	very long	very long
n = 10,000	< 1 sec	< 1 sec	2 min	12 days	very long	very long	very long
n = 100,000	< 1 sec	2 sec	3 hours	32 years	very long	very long	very long
n = 1,000,000	1 sec	20 sec	12 days	31,710 years	very long	very long	very long

Efficiency = polynomial

Polynomial-time solvability emerged as a formal notion of efficiency by a gradual process, motivated by the work of a number of researchers including Cobham, Rabin, Edmonds, Hartmanis, and Stearns.

Similarly, the use of asymptotic order of growth notation to bound the running time of algorithms—as opposed to working out exact formulas with leading coefficients and lower-order terms—is a modeling decision that was quite non-obvious at the time it was introduced;

Tempo di esecuzione

Esempio: algoritmo per la ricerca del massimo fra n numeri a₁,..., a_n

```
    max ← a<sub>1</sub>
    for i = 2 to n {
    if (a<sub>i</sub> > max)
    max ← a<sub>i</sub>
    }
```

Taglia dell'input = n

Tempo di un assegnamento= c_1 (costante, non dipende da n) Tempo di un incremento = c_1 Tempo di un confronto = c_2

```
Linea 1: c_1

Linea 2: n(c_1 + c_2)

Linea 3 – 4 (una esecuzione): \leq c_2 + c_1
```

$$T(n) \le c_1 + n(c_1 + c_2) + (n-1)(c_2 + c_1) = 2(c_1 + c_2) n - c_2 = A n + B$$

dove A e B sono costanti non quantificabili a priori (dipendono dall'implementazione)

Operazioni elementari

Assegnamento, incremento, confronto sono considerate operazioni elementari all'interno dell'algoritmo della ricerca del massimo.

Richiedono tempo costante (= non dipendente dalla taglia n dell'input) ma a priori non quantificabile

Tempo di esecuzione T(n) sarà misurato in termini del numero di operazioni elementari per eseguire l'algoritmo su un input di taglia n

Notazioni asintotiche

Nell'analisi asintotica analizziamo T(n)

- 1. A meno di costanti moltiplicative (perché non quantificabili)
- 2. Asintoticamente (per considerare input di taglia arbitrariamente grande)

Le notazioni asintotiche:

$$O, \Omega, \Theta$$

ci permetteranno il confronto tra funzioni, mantenendo queste caratteristiche

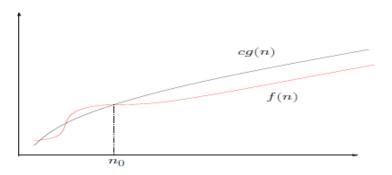
Diremo per esempio che l'algoritmo per la ricerca del massimo ha un tempo di esecuzione lineare, T(n) = O(n), essendo $T(n) \le An + B = \Theta(n)$

Notazioni Asintotiche: notazione O

Date $f: n \in N \rightarrow f(n) \in R_+, g: n \in N \rightarrow g(n) \in R_+,$ scriveremo

$$\boxed{f(n) = O(g(n))} \\ \Leftrightarrow \exists c > 0, \ \exists n_0 \ \text{tale che} \ f(n) \leq cg(n), \ \forall n \geq n_0$$

Informalmente, f(n) = O(g(n)) se f(n) **non** cresce più velocemente di g(n). Graficamente



Esempi

$$10n^3 + 2n^2 + 7 = O(n^3)$$

Occorre provare che

$$\exists c, n_0 : 10n^3 + 2n^2 + 7 \le cn^3, \ \forall n \ge n_0$$

Si ha:
$$10n^3 + 2n^2 + 7 \le 10n^3 + 2n^3 + 7$$

 $\le 10n^3 + 2n^3 + n^3 = 13n^3, \ \forall n \ge 2.$

Quindi la diseguaglianza è soddisfatta per c=13 e $n_0=2$.

Esempi: un polinomio è O del suo primo termine

Più in generale, possiamo provare che:

$$a_k n^k + a_{k-1} n^{k-1} + \dots + a_1 n + a_0 = O(n^k)$$

Infatti

$$a_k n^k + a_{k-1} n^{k-1} + \cdots + a_1 n + a_0$$

$$\leq |a_k| n^k + |a_{k-1}| n^{k-1} + \cdots + |a_1| n + |a_0|$$

$$\leq |a_k| n^k + |a_{k-1}| n^k + \cdots + |a_1| n^k + |a_0| n^k$$

$$= (|a_k| + |a_{k-1}| + \cdots + |a_1| + |a_0|) n^k$$

$$= c n^k$$

$$\implies a_k n^k + a_{k-1} n^{k-1} + \dots + a_1 n + a_0 = O(n^k)$$

quindi

$$n^{3} + 100n + 200 = O(n^{3})$$

$$20n^{3} + n^{5} + 100n = O(n^{5})$$

$$10n^{2} + n^{5/2} + 7n = O(n^{5/2})$$

$$10n + 3n^{7} + 5n^{6} + 9n^{3} + 34n^{2} + 22n^{5} + n^{8/3} + 4n^{7/2} + 23n^{11/2} = O(n^{7})$$

Notazione asintotica Ω

Notazione duale di O:

$$f(n) = \Omega(g(n))$$
 se e solo se $g(n) = O(f(n))$

Notazioni Asintotiche: notazione ⊖

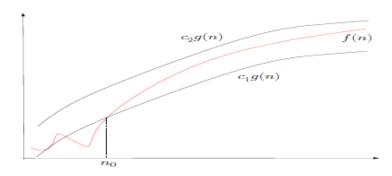
Date $f: n \in N \to f(n) \in R_+$, $g: n \in N \to g(n) \in R_+$, scriveremo

$$f(n) = \Theta(g(n))$$

$$\Leftrightarrow \exists n_0, c_1, c_2 > 0 : c_1 g(n) \le f(n) \le c_2 g(n), \forall n \ge n_0$$

Equivalentemente

$$f(n) = \Theta(g(n)) \Leftrightarrow f(n) = O(g(n)) \in f(n) = \Omega(g(n))$$



Notazione ⊖

Date due funzioni f(n) scriveremo

$$f(n) = O(g(n))$$

se f(n) non cresce più velocemente di g(n)

Scriveremo invece

$$f(n) = \Omega(g(n))$$

se f(n) cresce almeno tanto velocemente di g(n)

Scriveremo infine

$$f(n) = \Theta(g(n))$$

se f(n) e g(n) crescono allo stesso modo

Θ limitazione esatta

• È perfettamente legittimo dire che $n^3+n\sqrt{n}\log n+10=O(n^3),$ ma è più preciso dire che $n^3+n\sqrt{n}\log n+10=\Theta(n^3)$

• È corretto dire che $n^{\frac{1}{\log n}} = O(n)$, ma è più preciso dire che

$$n^{\frac{1}{\log n}} = \left(2^{\log n}\right)^{\frac{1}{\log n}} = 2 = \Theta(1)$$

È quindi una questione di precisione nel linguaggio...

 Θ è una limitazione esatta (*tight bound*)

Tornando a T(n)

T(n)=O(g(n)) significa che il tempo di esecuzione, anche nel caso peggiore, è limitato superiormente da g(n)

 $T(n) = \Omega(g(n))$ significa che il tempo di esecuzione, anche nel caso migliore, è limitato inferiormente da g(n)

 $T(n) = \Theta(g(n))$ significa che nel caso peggiore è O(g(n)) e nel caso migliore è $\Omega(g(n))$

(in pratica non vi è distinzione fra tempo di esecuzione nel caso peggiore e migliore)

Esempio. $T_l(n)$, tempo di esecuzione di InsertionSort è $T_l(n) = \Omega(n)$ e $T_l(n) = (n^2)$ $T_M(n)$, tempo di esecuzione di MergeSort è $T(n) = \Theta(n \log n)$

In termini di analisi matematica

• se $\lim_{n\to\infty}\frac{f(n)}{g(n)}=c\neq 0$ allora

$$f(n) = O(g(n))$$
 e $g(n) = O(f(n))$ (ovvero $f(n) = \Theta(g(n))$)

• se $\lim_{n\to\infty}\frac{f(n)}{g(n)}=0$ allora

$$f(n) = O(g(n))$$
 ma $g(n) \neq O(f(n))$

• se $\lim_{n\to\infty} \frac{f(n)}{g(n)} = \infty$ allora

$$f(n) \neq O(g(n))$$
 ma $g(n) = O(f(n))$

Esempio

Sia $f(n) = \log n$ e $g(n) = \sqrt{n}$. Usando la regola de l'Hôpital abbiamo

$$\lim_{n \to \infty} \frac{f(n)}{g(n)} = \lim_{n \to \infty} \frac{\log n}{\sqrt{n}}$$

$$= \lim_{n \to \infty} \frac{1/n}{1/(2\sqrt{n})}$$

$$= \lim_{n \to \infty} \frac{2}{\sqrt{n}} = 0$$

da cui otteniamo immediatamente

$$\log n = O(\sqrt{n})$$

FINE

Notazioni asintotiche

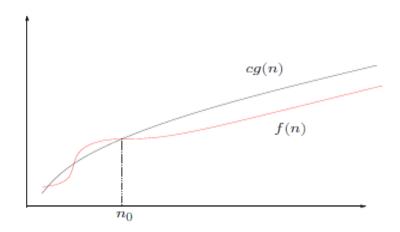
Notazioni Asintotiche: notazione O

Date $f: n \in N \rightarrow f(n) \in R_+$, $g: n \in N \rightarrow g(n) \in R_+$, scriveremo

$$f(n) = O(g(n))$$

$$\Leftrightarrow \exists c > 0, \ \exists n_0 \ \text{tale che} \ f(n) \le cg(n), \ \forall n \ge n_0$$

Informalmente, f(n) = O(g(n)) se f(n) **non** cresce più velocemente di g(n). Graficamente



Asymptotic Order of Growth

- Upper bounds. T(n) is O(f(n)) if there exist constants c > 0 and $n_0 \ge 0$ such that for all $n \ge n_0$ we have $T(n) \le c \cdot f(n)$.
- Lower bounds. T(n) is $\Omega(f(n))$ if there exist constants c > 0 and $n_0 \ge 0$ such that for all $n \ge n_0$ we have $T(n) \ge c \cdot f(n)$.
- Tight bounds. T(n) is $\Theta(f(n))$ if T(n) is both O(f(n)) and $\Omega(f(n))$.
- Ex: $T(n) = 32n^2 + 17n + 32$.
 - T(n) is O(n²), O(n³), Ω (n²), Ω (n), and Θ (n²).
 - T(n) is not O(n), $\Omega(n^3)$, $\Theta(n)$, or $\Theta(n^3)$.

Θ limitazione esatta

È perfettamente legittimo dire che

$$n^3 + n\sqrt{n}\log n + 10 = O(n^3),$$

ma è più preciso dire che $n^3 + n\sqrt{n}\log n + 10 = \Theta(n^3)$

• È corretto dire che $n^{\frac{1}{\log n}} = O(n)$, ma è più preciso dire che

$$n^{\frac{1}{\log n}} = \left(2^{\log n}\right)^{\frac{1}{\log n}} = 2 = \Theta(1)$$

È quindi una questione di precisione nel linguaggio...

 Θ è una limitazione esatta (*tight bound*)

Tornando a T(n)

T(n) = O(g(n)) significa che il tempo di esecuzione, anche nel caso peggiore, è limitato superiormente da g(n)

 $T(n) = \Omega(g(n))$ significa che il tempo di esecuzione, anche nel caso migliore, è limitato inferiormente da g(n)

 $T(n) = \Theta(g(n))$ significa che nel caso peggiore è O(g(n)) e nel caso migliore è $\Omega(g(n))$

(in pratica non vi è distinzione fra tempo di esecuzione nel caso peggiore e migliore)

Esempio.

 $T_I(n)$, tempo di esecuzione di InsertionSort è $T_I(n) = \Omega(n)$ e $T_I(n) = O(n^2)$ $T_M(n)$, tempo di esecuzione di MergeSort è $T(n) = \Theta(n \log n)$

Notation

- Slight abuse of notation. T(n) = O(f(n)).
 - Asymmetric:
 - $f(n) = 5n^3$; $g(n) = 3n^2$
 - $f(n) = O(n^3) = g(n)$
 - but $f(n) \neq g(n)$.
 - Better notation: $T(n) \in O(f(n))$.

- Meaningless statement: "Any comparison-based sorting algorithm requires at least O(n log n) comparisons".
 - Use Ω for lower bounds.

Funzioni più utilizzate

Scaletta:

Man mano che si scende troviamo funzioni che crescono **più** velocemente (in senso stretto)

nome
costante
$\log \log$
logaritmico
sublineare
lineare
$n \log n$
quadratico
cubico
polinomiale
esponenziale
fattoriale

Asymptotic Bounds for Some Common Functions

- Polynomials. $a_0 + a_1 n + ... + a_d n^d$ is $\Theta(n^d)$ if $a_d > 0$.
- Polynomial time. Running time is O(n^d) for some constant d independent of the input size n.
- Logarithms. O(log_a n) = O(log_b n) for any constants a, b > 0.
 can avoid specifying the base
- Logarithms. For every x > 0, $\log n = O(n^x)$.

log grows slower than every polynomial

• Exponentials. For every r > 1 and every d > 0, $n^d = O(r^n)$.

every exponential grows faster than every polynomial

Più in dettaglio

Informalmente....

Più precisamente:

☐ Un esponenziale cresce più velocemente di qualsiasi polinomio

$$n^{d} = O(r^{n})$$

per ogni d>0 e r>1

Un polinomio cresce più velocemente di qualsiasi potenza di logaritmo

$$\log_b n^k = O(n^d)$$

 $\log_b n^k = O(n^d)$ per ogni k, d>0 e b>1

E ancora

Informalmente....

- □ Nel confronto fra esponenziali conta la base
- Nel confronto fra polinomi conta il grado
- ☐ Nel confronto fra logaritmi ... la base non conta

Per esempio:

$$2^n = O(3^n)$$

$$n^2 = O(n^3)$$

$$log_{10} n = log_2 n (log_{10} 2) = \Theta (log_2 n)$$

Polinomi vs logaritmi

Un polinomio cresce più velocemente di qualsiasi potenza di logaritmo. Per esempio

Proviamo che

$$\log_2 n = O(n).$$

Occorre provare che $\exists c, n_0 : \log_2 n \le cn \quad \forall n \ge n_0$

Per induzione su n: Per n=1 abbiamo $\log_2 1 = 0 \le 1$.

In generale, per $n \ge 1$

$$\begin{split} \log_2(n+1) &\leq \log_2(n+n) = \log_2(2n) \\ &= \log_2 2 + \log_2 n = 1 + \log n \\ &\leq 1 + n \text{ (per ipotesi induttiva)} \end{split}$$

Abbiamo quindi provato che

$$\log n \le n \quad \forall n \ge 1 \Longrightarrow \left| \log n = O(n) \right|$$

Lo proveremo con c=1 e $n_0=1$, cioè log_2 $n \le n$, $\forall n \ge 1$

In pratica

Per stabilire l'ordine di crescita di una funzione dovremo tenere ben presente la «scaletta» e alcune proprietà delle notazioni asintotiche

Properties

Transitivity.

- If f = O(g) and g = O(h) then f = O(h).
- If $f = \Omega(g)$ and $g = \Omega(h)$ then $f = \Omega(h)$.
- If $f = \Theta(g)$ and $g = \Theta(h)$ then $f = \Theta(h)$.

Additivity.

- If f = O(h) and g = O(h) then f + g = O(h).
- If $f = \Omega(h)$ and $g = \Omega(h)$ then $f + g = \Omega(h)$.
- If $f = \Theta(h)$ and $g = \Theta(h)$ then $f + g = \Theta(h)$.

Transitività

Se f = O(g) e g = O(h) allora f = O(h)

Ipotesi:

esistono costanti $c,n_0 > 0$ tali che per ogni $n \ge n_0$ si ha $f(n) \le c \cdot g(n)$ esistono costanti $c',n'_0 > 0$ tali che per ogni $n \ge n'_0$ si ha $g(n) \le c' \cdot h(n)$

Tesi (Dobbiamo mostrare che):

esistono costanti c'',n''₀ > 0 tali che per ogni $n \ge n''_0$ si ha $f(n) \le c'' \cdot h(n)$ Quanto valgono c'', n''_0 ?

$$f(n) \le c \cdot g(n) \le c \cdot c' \cdot h(n)$$
 per ogni $n \ge n_0$ e $n \ge n'_0$

$$c'' = c \cdot c'$$

 $n''_{0} = \max \{n_{0}, n'_{0}\}$

Additività

Se f = O(h) e g = O(h) allora f + g = O(h)

Ipotesi:

esistono costanti $c,n_0 > 0$ tali che per ogni $n \ge n_0$ si ha $f(n) \le c \cdot h(n)$ esistono costanti $c',n'_0 > 0$ tali che per ogni $n \ge n'_0$ si ha $g(n) \le c' \cdot h(n)$

Tesi (Dobbiamo mostrare che):

esistono costanti c'',n''₀ > 0 tali che per ogni $n \ge n''_0$ si ha $f(n)+g(n) \le c'' \cdot h(n)$

Quanto valgono c'', n''_0 ? $f(n)+g(n) \le c \cdot h(n) + c' \cdot h(n) = (c+c') h(n) \text{ per ogni } n \ge n_0 \text{ e } n \ge n'_0$ c'' = c + c' $n''_0 = \max\{n_0, n'_0\}$

Due regole fondamentali

Nel determinare l'ordine di crescita asintotica di una funzione

- 1. Possiamo trascurare i termini additivi di ordine inferiore
- 2. Possiamo trascurare le costanti moltiplicative

ATTENZIONE!

Le regole NON servono però per determinare esplicitamente le costanti c ed n_0 .

Prima regola

«Possiamo trascurare i termini additivi di ordine inferiore»

Cosa significa formalmente?

Se g = O(f) allora f + g =
$$\Theta$$
(f)

Ipotesi:

```
g è di ordine inferiore a f: g=O(f):
esistono costanti c,n_0 > 0 tali che per ogni n \ge n_0 si ha g(n) \le c \cdot f(n)
```

Tesi (Dobbiamo mostrare che):

```
f + g = O(f)

f + g = \Omega(f): esistono c'',n''<sub>0</sub> > 0 tali che per ogni n \ge n''_0 si ha f(n) + g(n) \ge c'' \cdot f(n)
```

```
Dato che f=O(f) e g=O(f) per l'additività: f+g=O(f). f(n)+g(n) \ge f(n) essendo g(n) \ge 0; c''=1 ed n''_0 = 0
```

Seconda regola

«Possiamo trascurare le costanti moltiplicative»

Cosa significa formalmente?

Per ogni costante a > 0 allora $a \cdot f = \Theta(f)$

Ipotesi: *a*>0

Tesi

esistono costanti $c, n_0 > 0$ tali che per ogni $n \ge n_0$ si ha $\alpha \cdot f(n) \le c \cdot f(n)$ esistono costanti $c', n'_0 > 0$ tali che per ogni $n \ge n'_0$ si ha $\alpha \cdot f(n) \ge c' \cdot f(n)$ c=a c'=1

Per confrontare crescita di due funzioni

Basterà usare:

- La «scaletta»
- Le proprietà di additività e transitività
- Le due regole fondamentali

Esercizio 1

Vero o Falso?

$$\bullet$$
 $3n^5 - 16n + 2 = O(n^5)$?

$$\bullet$$
 $3n^5 - 16n + 2 = O(n)$?

$$\bullet$$
 $3n^5 - 16n + 2 = O(n^{17})?$

$$\bullet$$
 $3n^5 - 16n + 2 = \Omega(n^5)$?

$$3n^5 - 16n + 2 = \Omega(n)?$$

$$\bullet$$
 $3n^5 - 16n + 2 = \Omega(n^{17})?$

$$3n^5 - 16n + 2 = \Theta(n^5)?$$

$$\bullet$$
 $3n^5 - 16n + 2 = \Theta(n)$?

$$\bullet$$
 $3n^5 - 16n + 2 = \Theta(n^{17})?$

Esercizio 2

Per ciascuna delle seguenti coppie di funzioni f(n) e g(n), dire se f(n) = O(g(n)), oppure se g(n) = O(f(n)).

$$f(n) = (n^2 - n)/2, g(n) = 6n$$

$$f(n) = n + 2\sqrt{n}, \qquad g(n) = n^2$$

$$f(n) = n + \log n, \qquad g(n) = n\sqrt{n}$$

$$f(n) = n^2 + 3n, \qquad g(n) = n^3$$

$$f(n) = n \log n, \qquad g(n) = n\sqrt{n}/2$$

$$f(n) = n + \log n, \qquad g(n) = \sqrt{n}$$

$$f(n) = 2(\log n)^2, \qquad g(n) = \log n + 1$$

$$f(n) = 4n \log n + n, \qquad g(n) = (n^2 - n)/2$$

$$f(n) = (n^2 + 2)/(1 + 2^{-n}), g(n) = n + 3$$

$$f(n) = n + n\sqrt{n}, g(n) = 4n\log(n^3 + 1)$$

NOTA: Esistono anche funzioni (particolari) non confrontabili tramite O

Esercizio 3

Date le seguenti funzioni

$$\log n^5, n^{\log n}, \log^2 n, 10\sqrt{n}, (\log n)^n, n^n, n \log \sqrt{n}, n \log^3 n, n^2 \log n, \sqrt{n \log n}, 10 \log \log n, 3 \log n,$$

ordinarle scrivendole da sinistra a destra in modo tale che la funzione f(n) venga posta a sinistra della funzione g(n) se f(n) = O(g(n)).

Proviamo...

$$10 \log \log n$$
, $3 \log n$, $\log n^5$, $\log^2 n$, $10 \sqrt{n}$, $\sqrt{n \log n}$, $n \log \sqrt{n}$
 $n \log^3 n$, $n^2 \log n$, $n^{\log n}$, $(\log n)^n$, n^n

Solved Exercise 1, pag. 65-66

Ordinare le seguenti funzioni

$$f_1(n)=10^n$$

 $f_2(n)=n^{1/3}$
 $f_3(n)=n^n$
 $f_4(n)=\log_2 n$
 $f_5(n)=2^{\log_2 n}$
in sense crescente.

in senso crescente.

Cioè, se g(n) segue la funzione f(n) allora f(n) = O(g(n)).

Soluzione.

Parte più facile: $f_4(n) = \log_2 n$, $f_2(n) = n^{1/3}$, $f_1(n) = 10^{n}$, $f_3(n) = n^n$

$$E f_5(n) = 2^{\sqrt{\log_2 n}}$$
?

Continuare lo svolgimento ...

Esercizi «per casa»

- Esercizi delle slides precedenti
- Es. 3, 4, 5 e 6 di pagg. 67-68 del libro [KT]
- Esercizi di esami (es. 1-9 dall'elenco online)

Programmazione dinamica

Primi esempi

Dynamic Programming Applications

Areas.

Bioinformatics.

Control theory.

Information theory.

Operations research.

Computer science: theory, graphics, AI, systems,

Some famous dynamic programming algorithms.

Viterbi for hidden Markov models.

Unix diff for comparing two files.

Smith-Waterman for sequence alignment.

Bellman-Ford for shortest path routing in networks.

Cocke-Kasami-Younger for parsing context free grammars.

Programmazione dinamica e Divide et Impera

Entrambe le tecniche dividono il problema in sottoproblemi: dalle soluzioni dei sottoproblemi è possibile risalire alla soluzione del problema di partenza.

Divide et Impera dà luogo in modo naturale ad algoritmi ricorsivi. La programmazione dinamica può dar luogo ad algoritmi:

- ricorsivi con annotazione delle soluzioni su una tabella
- iterativi

Idea chiave:

calcolare la soluzione di ogni sottoproblema 1 sola volta ed annotarla su una **tabella**

Un primo esempio: calcolo dei numeri di Fibonacci

Sequenza dei numeri di Fibonacci:

In generale il prossimo numero è la somma degli ultimi due. Come si formalizza?

Indicando con F_n (oppure F(n)) l' n-esimo numero, abbiamo la seguente relazione di ricorrenza:

$$F_{n} = \begin{cases} F_{n-1} + F_{n-2} & \text{se } n \ge 3 \\ 1 & \text{se } n = 1, 2 \end{cases}$$

I numeri di Fibonacci

Motivazione: problema di dinamica delle popolazioni studiato da *Leonardo da Pisa* (anche noto come *Fibonacci*)

I numeri di Fibonacci godono di una gamma stupefacente di proprietà, si incontrano nei modelli matematici di svariati fenomeni e sono utilizzabili per molti procedimenti computazionali; essi inoltre posseggono varie generalizzazioni interessanti. A questi argomenti viene espressamente dedicato un periodico scientifico, *The Fibonacci Quarterly*.

I numeri di Fibonacci sono legati alla "sezione aurea" Φ.

$$\lim_{n \to \infty} \frac{F_n}{F_{n-1}} = \phi$$

$$\phi = \frac{1 + \sqrt{5}}{2} = 1,6180339887...$$

Come calcolare l' n-esimo numero di Fibonacci?

Un primo approccio numerico.

Possiamo usare una funzione matematica che calcoli direttamente i numeri di Fibonacci.

Infatti si può dimostrare che:

$$F_n = \frac{1}{\sqrt{5}} \left(\phi^n - \hat{\phi}^n \right)$$

$$\phi = \frac{1+\sqrt{5}}{2} \approx +1.618$$

$$\hat{\phi} = \frac{1-\sqrt{5}}{2} \approx -0.618$$

e quindi...

Un primo algoritmo numerico

Però:

Problemi di accuratezza sul numero di cifre decimali; il risultato non sarebbe preciso.

Un secondo algoritmo ricorsivo

Secondo approccio: utilizzare la definizione ricorsiva, che lavora solo su interi

$$F_{n} = \begin{cases} F_{n-1} + F_{n-2} & \text{se } n \ge 3 \\ 1 & \text{se } n = 1, 2 \end{cases}$$

Fibonacci2(n)

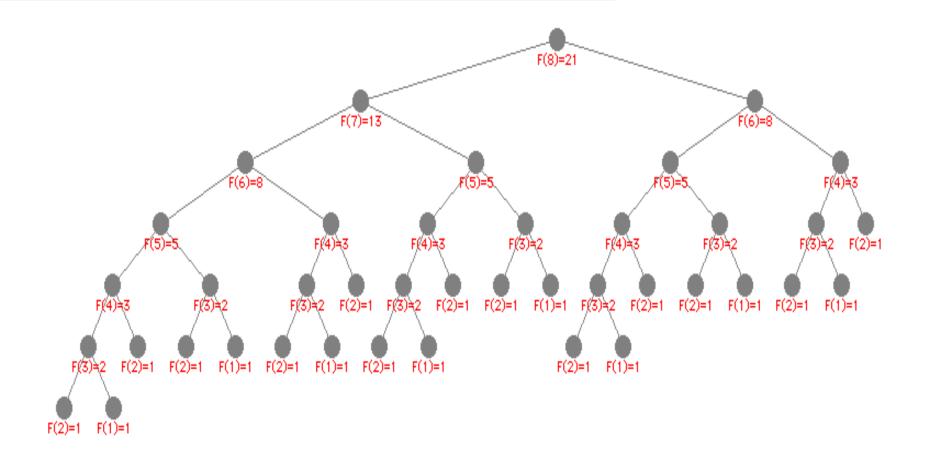
If n≤2 then Return 1
Else Return Fibonacci2(n-1)+ Fibonacci2(n-2)

Un esempio

```
Fibonacci2(n)

If n≤2 then Return 1

Else Return Fibonacci2(n-1)+ Fibonacci2(n-2)
```



Analisi del tempo di esecuzione

$$T(n) = T(n-1) + T(n-2) + \Theta(1)$$
 $n \ge 3$
 $T(n) = \Theta(1)$ $n = 1, 2$

$$T(n) = O(2^n)$$

Dimostrazione per induzione.

Sia c>o tale che $T(n) = T(n-1) + T(n-2) + c e T(1), T(2) \le c.$

Tesi: $T(n) \le c 2^n$.

Base: $T(1) \le c \le c \ 2^1 = 2 \ c$; $T(2) \le c \le c \ 2^2 = 4 \ c$

Ipotesi induttiva: $T(n-1) \le c \ 2^{n-1} \ e \ T(n-2) \le c \ 2^{n-2}$

Passo induttivo:
$$T(n) \le c \ 2^{n-1} + c \ 2^{n-2} + c \le c \ 2^{n-1} + c \ 2^{n-2} + c \ 2^{n-2} = c \ 2^{n-1} + c \ (2^{n-2} + 2^{n-2}) = c \ 2^{n-1} + c \ (2 \cdot 2^{n-2}) = c \ 2^{n-1} + c \ 2^{n-1} = c \ 2^n$$

Nota: $T(n) \approx F(n) \approx \Phi^n$

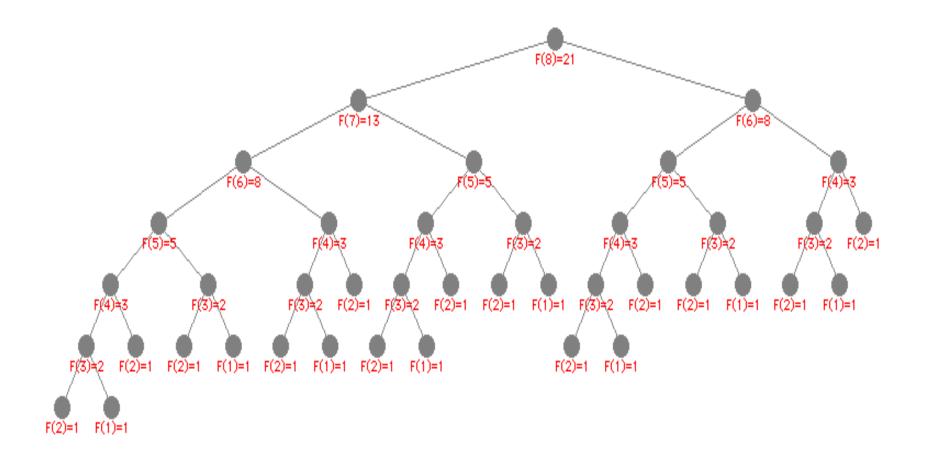
Già calcolare F(100) con le attuali tecnologie richiederebbe un tempo inaccettabile

Si può fare di meglio?

Difetti dell'algoritmo ricorsivo

Perché l'algoritmo Fibonacci 2 è lento?

Perché continua a ricalcolare ripetutamente la soluzione dello stesso sottoproblema.



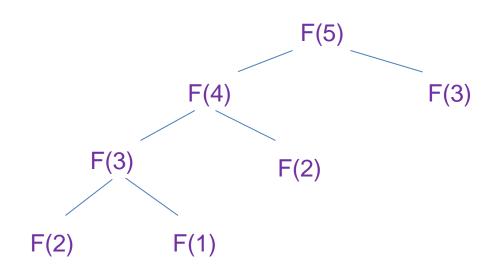
Migliorare l'algoritmo ricorsivo (versione con annotazione)

Perché non memorizzare le soluzioni dei sottoproblemi via via calcolate?

Basta un array F[1..n] per memorizzare tutti valori già calcolati. L'array F inizialmente è vuoto.

```
Fibonacci3-memo(j)
If j \le 2 then F[j]=1
            Return F[j]
Else if F[j] non è vuoto then Return F[j]
Else Define F[j] = Fibonacci3-memo(j-1)+
                   Fibonacci3-memo(j-2)
      Return F[j]
Endif
```

Esempio j=5

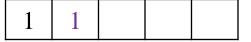


1	1	2	3	5
1	1	2	3	
1	1	2		
1	1			
	1			
			l	

Migliorare l'algoritmo ricorsivo (versione iterativa)

```
Fibonacci3-iter(n)

F[1]=1
F[2]=1
For i=3,...,n
         F[i]= F[i-1]+F[i-2]
Endfor
Return F[n]
```

1	1	2		
---	---	---	--	--

Tempo di esecuzione

Il tempo di esecuzione di Fibonacci 3-iter è $\Theta(n)$

Anche il tempo di esecuzione di Fibonacci3-memo è $\Theta(n)$: ogni differente chiamata ricorsiva è eseguita solo una volta, richiede tempo costante, e ci sono O(n) diverse chiamate a Fibonacci3-memo.

Confronto prestazioni

L'algoritmo Fibonacci3-iter e Fibonacci3-memo impiegano tempo proporzionale a n invece di esponenziale in n come Fibonacci2.

Tempo effettivo richiesto da implementazioni in C dei due seguenti algoritmi su piattaforme diverse:

	fibonacci2(58)	fibonacci3(58)
Pentium IV 1700MHz	15820 sec. (\simeq 4 ore)	0.7 milionesimi di secondo
Pentium III 450MHz	43518 sec. (\simeq 12 ore)	2.4 milionesimi di secondo
PowerPC G4 500MHz	58321 sec. (\simeq 16 ore)	2.8 milionesimi di secondo

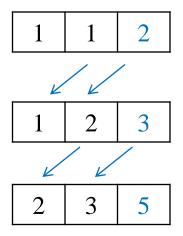
Analisi dello spazio necessario

Lo spazio di memoria necessario per eseguire Fibonacci3-iter e Fibonacci3-memo è

$$S(n) = \Theta(n)$$

perché entrambi gli algoritmi usano un array con n celle.

Ma in realtà possono bastare 3 celle (per qualsiasi n): per il calcolo di F[j] servono solo i valori nelle 2 celle precedenti



Programmazione dinamica: caratteristiche

Fibonacci3-memo e Fibonacci3-iter sono algoritmi di programmazione dinamica: perché?

- 1. La soluzione al problema originale si può ottenere da soluzioni a sottoproblemi
- 2. Esiste una relazione di ricorrenza per la funzione che dà il valore ottimale ad un sottoproblema
- 3. Le soluzioni ai sottoproblemi sono via via memorizzate in una tabella

Due implementazioni possibili:

- Con annotazione (memoized) o top-down
- Iterativa o *bottom-up*

Programmazione dinamica vs Divide et Impera

Entrambe le tecniche dividono il problema in sottoproblemi: dalle soluzioni dei sottoproblemi è possibile risalire alla soluzione del problema di partenza

Dobbiamo allora considerare la tecnica Divide et Impera superata?

NO: La programmazione dinamica risulta più efficiente quando:

- Ci sono dei sottoproblemi ripetuti
- Ci sono solo un numero polinomiale di sottoproblemi (da potere memorizzare in una tabella)

Per esempio: nel MergeSort non ci sono sottoproblemi ripetuti.

6.1 Weighted Interval Scheduling

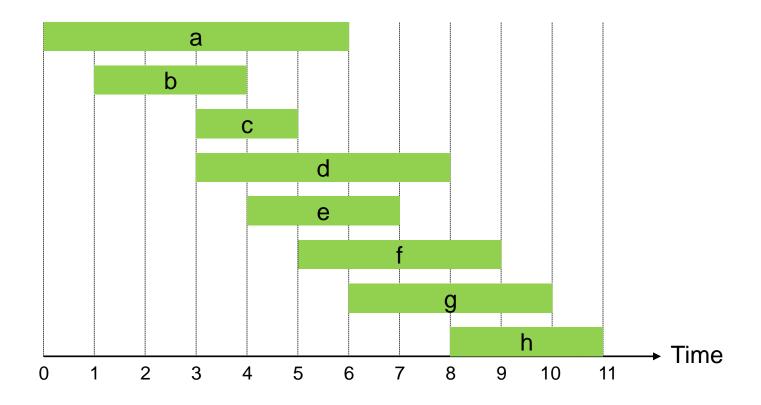
Interval Scheduling

Interval scheduling problem.

Job j starts at s_j , finishes at f_j .

Two jobs compatible if they don't overlap.

Goal: find biggest subset of mutually compatible jobs.



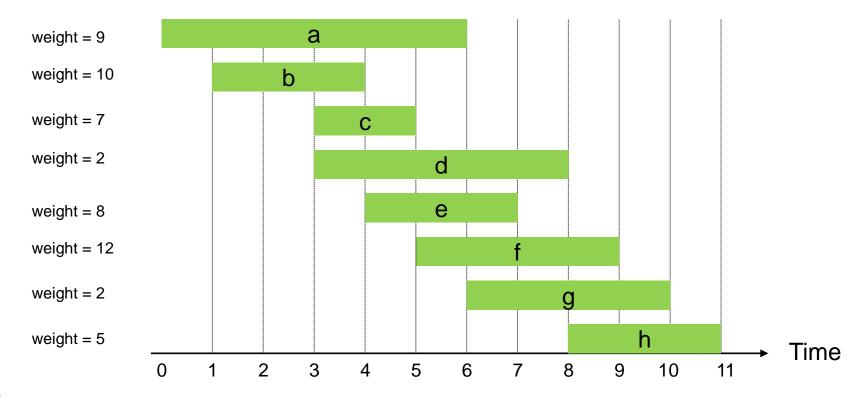
Weighted Interval Scheduling

Weighted interval scheduling problem.

Job j starts at s_i , finishes at f_i , and has weight or value v_i .

Two jobs compatible if they don't overlap.

Goal: find maximum weight subset of mutually compatible jobs.



Weighted Interval Scheduling

Weighted interval scheduling problem.

Job j starts at s_i , finishes at f_i , and has weight or value v_i .

Two jobs compatible if they don't overlap.

Goal: find maximum weight subset of mutually compatible jobs.

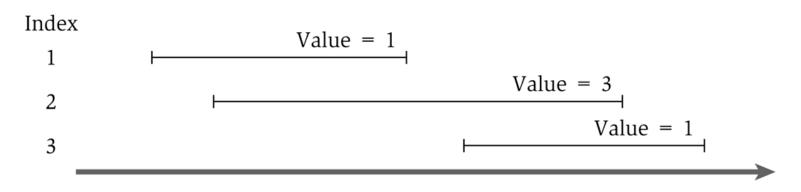


Figure 6.1 A simple instance of weighted interval scheduling.

Insiemi compatibili: {1,3} di peso 2 {2} di peso 3 è la soluzione ottimale

Copyright © 2005 Pearson Addison-Wesley. All rights reserved. 23

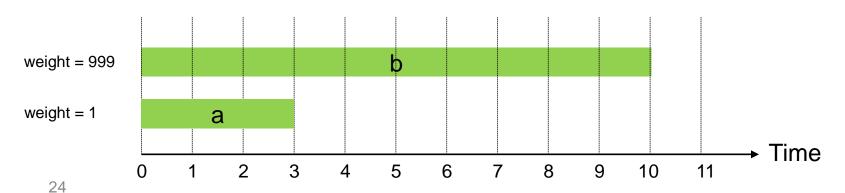
Unweighted Interval Scheduling Review

Note: Greedy algorithm works if all weights are 1.

Consider jobs in ascending order of finish time.

Add job to subset if it is compatible with previously chosen jobs.

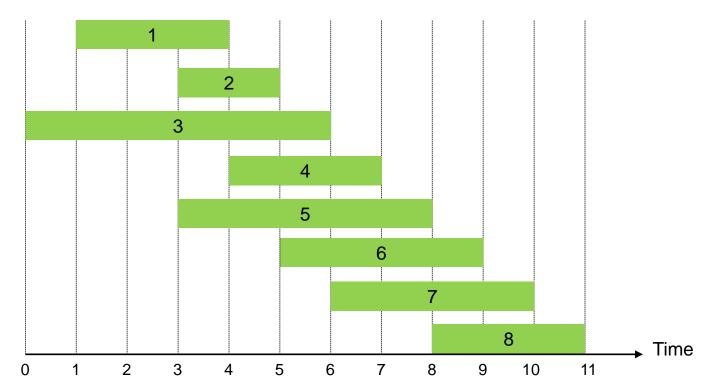
Observation. Greedy algorithm can fail spectacularly if arbitrary weights are allowed.



Weighted Interval Scheduling

Notation. Label jobs by finishing time: $f_1 \le f_2 \le ... \le f_n$. Def. p(j) = largest index i < j such that job i is compatible with j.

Ex: (independently from weights) p(8) = 5, p(7) = 3, p(2) = 0.



Index

Figure 6.2 An instance of weighted interval scheduling with the functions p(j) defined for each interval j.

Soluzione =
$$\{5, 3, 1\}$$

Valore = $2+4+2=8$

Dynamic Programming: Binary Choice

Notation. **OPT**(j) = value of optimal solution to the problem consisting of job requests 1, 2, ..., j.

Case 1: OPT selects job j.

can't use incompatible jobs $\{p(j) + 1, p(j) + 2, ..., j - 1\}$ must include optimal solution to problem consisting of remaining compatible jobs 1, 2, ..., p(j)optimal substructure

Case 2: OPT does not select job j.
must include optimal solution to problem consisting of remaining compatible jobs 1, 2, ..., j-1

$$OPT(j) = \begin{cases} 0 & \text{if } j = 0\\ \max\{v_j + OPT(p(j)), OPT(j-1)\} \end{cases}$$
 otherwise

Weighted Interval Scheduling: Brute Force

Brute force recursive algorithm.

```
Input: n, s_1, ..., s_n, f_1, ..., f_n, v_1, ..., v_n
Sort jobs by finish times so that f_1 \leq f_2 \leq \ldots \leq f_n.
Compute p(1), p(2), ..., p(n)
Compute-Opt(j) {
   if (j = 0)
       return 0
   else
       return max(v; + Compute-Opt(p(j)), Compute-Opt(j-1))
```

$$OPT(j) = \begin{cases} 0 & \text{if } j = 0\\ \max\{v_j + OPT(p(j)), OPT(j-1)\} & \text{otherwise} \end{cases}$$

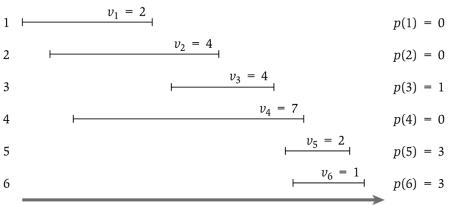


Figure 6.2 An instance of weighted interval scheduling with the functions p(j) defined for each interval j.

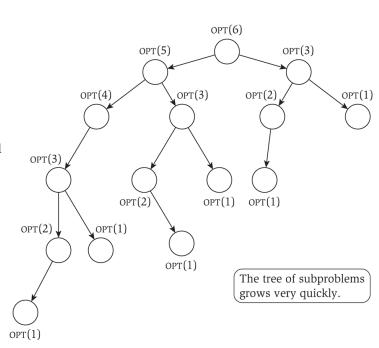
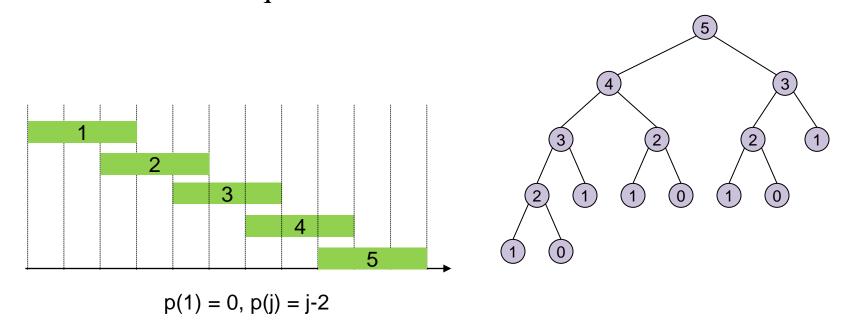


Figure 6.3 The tree of subproblems called by Compute-Opt on the problem instance of Figure 6.2.

Weighted Interval Scheduling: Brute Force

Observation. Recursive algorithm fails spectacularly because of redundant sub-problems \Rightarrow exponential algorithms.

Ex. Number of recursive calls for family of "layered" instances grows like Fibonacci sequence.



Weighted Interval Scheduling: Memoization

Memoization. Store results of each sub-problem in a cache; lookup as needed.

```
Input: n, s_1, ..., s_n, f_1, ..., f_n, v_1, ..., v_n
Sort jobs by finish times so that f_1 \leq f_2 \leq \ldots \leq f_n.
Compute p(1), p(2), ..., p(n)
for j = 1 to n
  M[j] = empty
M[j] = 0
M-Compute-Opt(j) {
   if (M[j] is empty)
       M[j] = max(w_j + M-Compute-Opt(p(j)), M-Compute-Opt(j-1))
   return M[j]
```

Weighted Interval Scheduling: Running Time

Claim. Memoized version of algorithm takes O(n log n) time.

```
Sort by finish time: O(n \log n).
Computing p(\cdot): O(n) after sorting by start time (exercise).
```

- M-Compute-Opt (j): each invocation takes O(1) time and either
 - (i) returns an existing value M[j]
 - (ii) fills in one new entry M[j] and makes two recursive calls

Progress measure $\Phi = \#$ nonempty entries of M[].

initially $\Phi = 0$, throughout $\Phi \le n$.

(ii) increases Φ by $1 \Rightarrow$ at most 2n recursive calls.

Overall running time of M-Compute-Opt (n) is O(n).

Remark. O(n) if jobs are pre-sorted by start and finish times.

Weighted Interval Scheduling: Bottom-Up

Bottom-up dynamic programming. Unwind recursion.

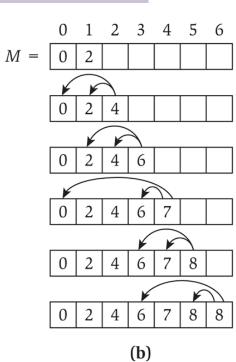
```
Input: n, s_1,...,s_n, f_1,...,f_n, v_1,...,v_n

Sort jobs by finish times so that f_1 \leq f_2 \leq ... \leq f_n.

Compute p(1), p(2), ..., p(n)

Iterative-Compute-Opt {
    M[0] = 0
    for j = 1 to n
        M[j] = max(v_j + M[p(j)], M[j-1])
}
```

```
Iterative-Compute-Opt {
    M[0] = 0
    for j = 1 to n
        M[j] = max(w<sub>j</sub> + M[p(j)], M[j-1])
}
```

Copyright © 2005 Pearson Addison-Wesley. All rights reserved.

Esempio del calcolo di una soluzione

$$OPT(j) = \begin{cases} 0 & \text{if } j = 0\\ \max\{v_j + OPT(p(j)), OPT(j-1)\} & \text{otherwise} \end{cases}$$

```
M[1] = \max ( 2+M[0], M[0]) = \max (2+0, 0) = 2
M[2] = \max ( 4+M[0], M[1]) = \max (4+0, 2) = 4
M[3] = \max ( 4+M[1], M[2]) = \max (4+2, 4) = 6
M[4] = \max ( 7+M[0], M[3]) = \max (7+0, 6) = 7
M[5] = \max ( 2+M[3], M[4]) = \max (2+6, 7) = 8
M[6] = \max ( 1+M[3], M[5]) = \max (1+6, 8) = 8
```

M[6]=M[5]: 6 non appartiene a OPT

M[5]= v_5 +M[3]: OPT contiene 5 e una soluzione ottimale al problema per {1,2,3}

M[3]=v₃+M[1]: OPT contiene 5, 3 e una soluzione ottimale al problema per {1}

M[1]=v₁+M[0]: OPT contiene 5, 3 e 1 (e una soluzione ottimale al problema vuoto)

Soluzione =
$$\{5, 3, 1\}$$

Valore = $2+4+2=8$

Weighted Interval Scheduling: Finding a Solution

Q. Dynamic programming algorithms computes optimal value. What if we want the solution itself (the set of intervals)?

A. Do some post-processing.

```
Run M-Compute-Opt(n)
Run Find-Solution(n)
Find-Solution(j) {
   if (j = 0)
      output nothing
   else if (v_i + M[p(j)] > M[j-1])
      print j
      Find-Solution(p(j))
   else
      Find-Solution (j-1)
```

Tecnica Divide et Impera

Algoritmi basati sulla tecnica Divide et Impera:

In questo corso:

- Ricerca binaria
- Mergesort (ordinamento)
- Quicksort (ordinamento)
- Moltiplicazione di interi
- Moltiplicazione di matrici (non in programma)

NOTA: nonostante la tecnica Divide-et-Impera sembri così «semplice» ben due «top ten algorithms of the 20° century» sono basati su di essa: Fast Fourier Transform (FFT)

Quicksort

"Great algorithms are the poetry of computation," says Francis Sullivan of the Institute for Defense Analyses' Center for Computing Sciences in Bowie, Maryland. He and Jack Dongarra of the University of Tennessee and Oak Ridge National Laboratory have put together a sampling that might have made Robert Frost beam with pride--had the poet been a computer jock.

Their list of 10 algorithms having "the greatest influence on the development and practice of science and engineering in the 20th century" appears in the January/February issue of Computing in Science & Engineering.

If you use a computer, some of these algorithms are no doubt crunching your data as you read this.

The drum roll, please:

1. 1946: The Metropolis Algorithm for Monte Carlo. Through the use of random processes, this algorithm offers an efficient way to stumble toward answers to problems that are too complicated to solve exactly. 1947: Simplex Method for Linear Programming. An elegant solution to a common problem in planning and decision-making.

1950: Krylov Subspace Iteration Method. A technique for rapidly solving the linear equations that abound in scientific computation.

1951: The Decompositional Approach to Matrix Computations. A suite of techniques for numerical linear algebra.

1957: The Fortran Optimizing Compiler. Turns high-level code into efficient computer-readable code.

from celestial mechanics to protein folding.

1959: OR Algorithm for Computing Eigenvalues. Another crucial matrix operation made swift and practical.

7. 1962: Quicksort Algorithms for Sorting. For the efficient handling of large databases.

1965: Fast Fourier Transform. Perhaps the most ubiquitous algorithm in use today, it breaks down waveforms (like sound)

into periodic components.

9. 1977: Integer Relation Detection. A fast method for spotting simple equations satisfied by collections of seemingly unrelated numbers.

10. 1987: Fast Multipole Method. A breakthrough in dealing with the complexity of n-body calculations, applied in problems ranging

Algorithms for the Ages

Ordinamento

INPUT: un insieme di n oggetti a₁, a₂, ..., a_n presi da un dominio totalmente ordinato secondo ≤

OUTPUT: una permutazione degli oggetti $a'_1, a'_2, ..., a'_n$ tale che $a'_1 \le a'_2 \le ... \le a'_n$

Applicazioni:

- Ordinare alfabeticamente lista di nomi, o insieme di numeri, o insieme di compiti d'esame in base a cognome studente
- Velocizzare altre operazioni (per es. è possibile effettuare ricerche in array ordinati in tempo O(log n))
- Subroutine di molti algoritmi (per es. *greedy*)

•

Algoritmi per l'ordinamento

Data l'importanza, esistono svariati algoritmi di ordinamento, basati su tecniche diverse:

Selectionsort
Heapsort
Mergesort
Quicksort
Bubblesort
Countingsort

Insertionsort

Ognuno con i suoi aspetti positivi e negativi.

Il Mergesort e il Quicksort sono entrambi basati sulla tecnica Divide et Impera, ma risultano avere differenti prestazioni

Mergesort

Dato un array di n elementi

- I) Divide: trova l'indice della posizione centrale e divide l'array in due parti ciascuna con n/2 elementi (più precisamente \[\ln/2 \right] e \[\ln/2 \])
- II) Risolve i due sottoproblemi ricorsivamente
- III) Impera: fonde i due sotto-array ordinati usando la procedura Merge

$$T(n) = \Theta(1) + 2T(n/2) + \Theta(n)$$

La soluzione è $T(n) = \Theta(n \log n)$

Nota:

Il tempo di esecuzione di Merge è $\Theta(n)$ (e non solo O(n)).

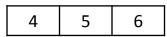
Infatti:

nel caso peggiore faremo O(n) confronti:

1	3	5

nel caso migliore faremo $\Omega(n)$ confronti

	1	1
1	2	3



Ricorda: Il tempo di esecuzione di un algoritmo è $\Theta(f(n))$ se nel caso peggiore è O(f(n)) e nel caso migliore è $\Omega(f(n))$

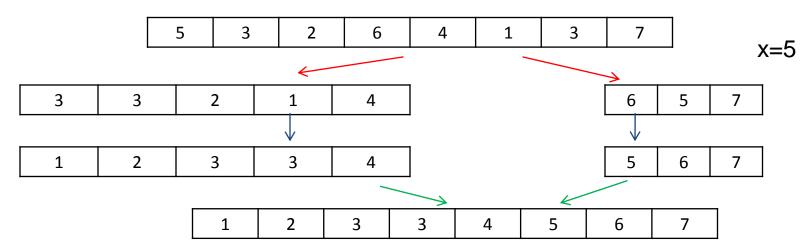
Il tempo di esecuzione di Mergesort è Θ(n log n)

Quicksort

Dato un array di n elementi

- I) Divide: scegli un elemento x dell'array (detto "pivot" o perno) e partiziona la sequenza in elementi \leq x ed elementi \geq x
- II) Risolvi i due sottoproblemi ricorsivamente

III) Impera: restituisci la concatenazione dei due sotto-array ordinati



Scelta del pivot

L'algoritmo funziona per qualsiasi scelta (primo / ultimo / ...), ma se vogliamo algoritmo "deterministico" devo fissare la scelta; nel seguito sceglieremo il **primo**.

Altrimenti: scelgo "random" e avrò "algoritmi randomizzati" (vedi Kleinberg & Tardos, dopo)

Partizionamento

Partiziona l'array in elementi ≤ x ed elementi ≥ x

Banalmente:

scorro l'array da 1 ad n e inserisco gli elementi ≤ pivot in un nuovo array e quelli ≥ del pivot in un altro nuovo array

Però:

- 1) avrei bisogno di array ausiliari
- 2) di che dimensione? I due sotto-array hanno un numero variabile di elementi

Partizione "in loco"

Partition:

- pivot = A[1]
- Scorri l'array da destra verso sinistra (con un indice j) e da sinistra verso destra (con un indice i) :

da destra verso sinistra, ci si ferma su un elemento < del pivot da sinistra verso destra, ci si ferma su un elemento > del pivot;

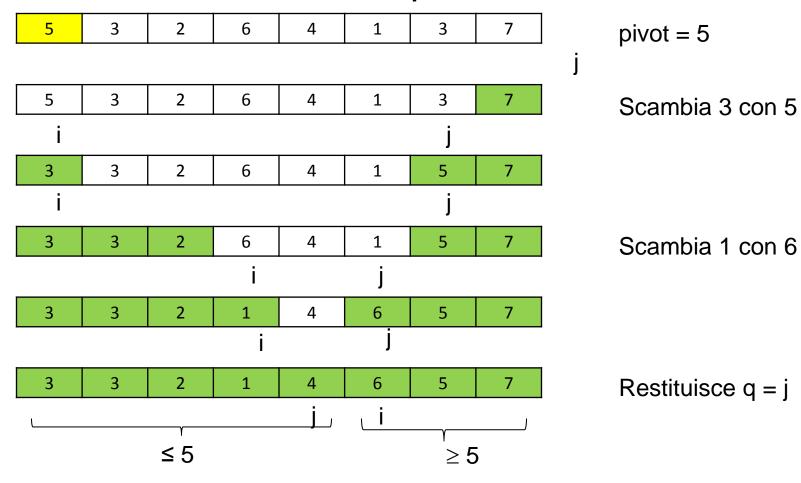
- Scambia gli elementi
- Riprendi la scansione finché i e j si incrociano

Partition (Hoare 1962)

```
Partition (A, p, r)
x = A[p]
i = p-1
j = r+1
while True
       do repeat j=j-1 until A[j]≤ x
          repeat i=i+1 until A[i]≥ x
          if i < j
                then scambia A[i] ↔ A[j]
                else return j
```

Esiste un diverso algoritmo per il partizionamento, e quindi per il Quicksort, dovuto a N. Lomuto ed esistono piccole varianti di questo (che potreste incontrare cambiando libro di testo)

Partizione in loco: un esempio



Correttezza di Partition

Perché funziona?

Ad ogni iterazione (quando raggiungo il while): la "parte verde" di sinistra (da p ad i) contiene elementi ≤ 5; la "parte verde" di destra (da j a r) contiene elementi ≥ 5.

Tale affermazione è vera all'inizio e si mantiene vera ad ogni iterazione (per induzione)

Analisi Partition

Il tempo di esecuzione è $\Theta(n)$

Correttezza: la concatenazione di due array ordinati in cui l'array di sinistra contiene elementi minori o uguali degli elementi dell'array di destra è un array ordinato

Analisi:
$$T(n) = \Theta(n) + T(k) + T(n-k)$$

Se k sono gli elementi da p a q (e n-k i rimanenti da q+1 a r) con $1 \le k \le n-1$

Analisi Quicksort (caso peggiore)

Un primo caso: ad ogni passo il pivot scelto è il minimo o il massimo degli elementi nell'array (la partizione è 1 | n-1):

$$T(n) = T(n-1) + T(1) + \Theta(n)$$

essendo $T(1) = \Theta(1)$

$$T(n) = T(n-1) + \Theta(n)$$

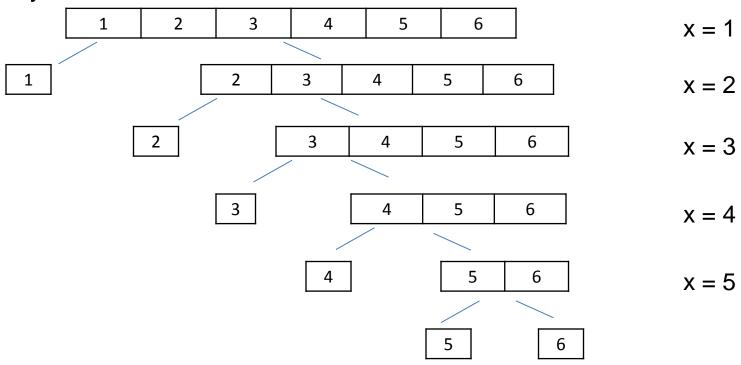
La cui soluzione è $T(n) = \Theta(n^2)$

Si può dimostrare che questo è il caso peggiore; quindi per il Quicksort:

$$T(n) = O(n^2)$$

Un esempio del caso peggiore del Quicksort

Un array ordinato



Analisi Quicksort (caso migliore)

Un altro caso: ad ogni passo il pivot scelto è la "mediana" degli elementi nell'array (la partizione è n/2 | n/2):

$$T(n) = 2 T(n/2) + \Theta(n)$$

La cui soluzione è $T(n) = \Theta(n \log n)$

(è la stessa relazione di ricorrenza del Mergesort)

Si può dimostrare che questo è il caso migliore; quindi: $T(n) = \Omega(n \log n)$

Riassumendo, per il Quicksort: $T(n) = O(n^2)$ e $T(n) = \Omega(n \log n)$

Il caso migliore è diverso dal caso peggiore quindi T(n) **non** è ⊕ di nessuna funzione

Is Quicksort ... quick?

Il Quicksort non ha un «buon» caso peggiore, ma ha un **buon caso medio** (si può dimostrare che anche nel caso medio si comporta come nel caso migliore), per cui si può considerare una sua versione «randomizzata»

Algoritmo randomizzato:

- Introduce una chiamata a random (a,b) (che restituisce un numero a caso fra a e b (a<b)
- Forza l'algoritmo a comportarsi come nel caso medio
- Non esiste una distribuzione d'input «peggiore» a priori

Nota: sul libro di testo trovate solo una versione randomizzata. Per il resto potete fare riferimento al libro di Cormen, Leiserson, Rivest, (Stein) *Introduzione agli algoritmi*, o ad altri testi consigliati.

QuickSort randomizzato

Quicksort vs Mergesort

Fase		MergeSort	Tempi	QuickSort	Tempi
I	Divide	$q = \lfloor (p+r)/2 \rfloor$	$\Theta(1)$	PARTITION	$\Theta(n)$
II	Ricorsione	$\lfloor n/2 \rfloor \rfloor \lceil n/2 \rceil$	2T(n/2)	k n-k	T(k) + T(n-k)
III	Combina	Merge	$\Theta(n)$	niente	$\Theta(1)$
			$T(n) = 2T(n/2) + \Theta(n)$		$T(n) = T(k) + T(n - k) + \Theta(n)$
			$T(n) = \Theta(n \log n)$		$T(n) = O(n^2), T(n) = \Omega(n \log n)$

Da ricordare sulla complessità dell'ordinamento

Esistono algoritmi di ordinamento con tempo nel caso peggiore Θ (n²) e Θ (nlogn)

Esistono anche algoritmi di ordinamento con tempo nel caso peggiore $\Theta(n)$, ma ... **non** sono basati sui confronti e funzionano **solo** sotto certe ipotesi.

Inoltre si può dimostrare che **tutti** gli algoritmi di ordinamento basati sui confronti richiedono $\Omega(n \log n)$ confronti nel caso peggiore!

Si dice che Ω (n log n) è una delimitazione inferiore (*lower bound*) al problema dell'ordinamento, cioè al numero di confronti richiesti per ordinare n oggetti.

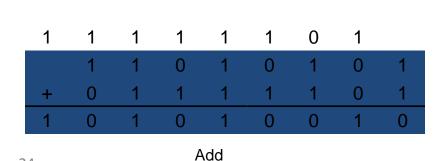
Delimitazione inferiore (lower bound) = quantità di risorsa **necessaria** per risolvere un determinato problema Indica la difficoltà intrinseca del problema.

5.5 Integer Multiplication

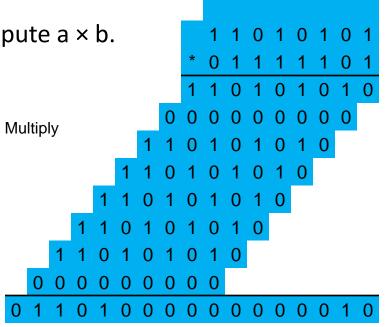
Integer Arithmetic

Add. Given two n-digit integers a and b, compute a + b. O(n) bit operations.

Multiply. Given two n-digit integers a and b, compute a \times b. Brute force solution: $\Theta(n^2)$ bit operations.



24



Divide –et – Impera per la moltiplicazione

Esprimere il prodotto di due interi a n cifre tramite prodotti di due interi con un numero inferiore di cifre.

Esempio: (base 10)
$$123.456 = 123 \cdot 1000 + 456 = 123 \cdot 10^3 + 456$$

(base 2) $1101 = 11 \cdot 2^2 + 01$
 $1101 = 1 \cdot 2^3 + 1 \cdot 2^2 + 0 \cdot 2^1 + 1 \cdot 2^0 = 1000$
 $= (1 \cdot 2 + 1) \cdot 2^2 + (0 \cdot 2^1 + 1 \cdot 2^0)$

Dato un intero x a n bit

$$x = x_1 \cdot 2^{n/2} + x_2$$

dove $x_1 e x_2$ hanno n/2 bit

Divide-and-Conquer Multiplication: Warmup

To multiply two n-digit integers:

Multiply four pairs of ½n-digit integers.

Add two pairs of ½n-digit integers, and shift to obtain result.

$$x = 2^{n/2} \cdot x_1 + x_0$$

$$y = 2^{n/2} \cdot y_1 + y_0$$

$$xy = \left(2^{n/2} \cdot x_1 + x_0\right) \left(2^{n/2} \cdot y_1 + y_0\right) = 2^n \cdot x_1 y_1 + 2^{n/2} \cdot \left(x_1 y_0 + x_0 y_1\right) + x_0 y_0$$

$$T(n) = \underbrace{4T(n/2)}_{\text{recursive calls}} + \underbrace{\Theta(n)}_{\text{add, shift}} \Longrightarrow T(n) = \Theta(n^2)$$

Karatsuba Multiplication

To multiply two n-digit integers:

Add two pairs of ½n digit integers.

Multiply three different pairs of ½n-digit integers (A, B, C).

Add, subtract, and shift ½n-digit integers to obtain result.

$$x = 2^{n/2} \cdot x_1 + x_0$$

$$y = 2^{n/2} \cdot y_1 + y_0$$

$$xy = 2^n \cdot x_1 y_1 + 2^{n/2} \cdot (x_1 y_0 + x_0 y_1) + x_0 y_0$$

$$= 2^n \cdot x_1 y_1 + 2^{n/2} \cdot ((x_1 + x_0)(y_1 + y_0) - x_1 y_1 - x_0 y_0) + x_0 y_0$$

A

B

A

C

C

Theorem. [Karatsuba-Ofman, 1962]

Can multiply two n-digit integers in $O(n^{1.585})$ bit operations.

Karatsuba Algorithm

```
Recursive-Multiply(x,y):

Write x = x_1 \cdot 2^{n/2} + x_0
y = y_1 \cdot 2^{n/2} + y_0
Compute x_1 + x_0 and y_1 + y_0
p = \text{Recursive-Multiply}(x_1 + x_0, y_1 + y_0)
x_1y_1 = \text{Recursive-Multiply}(x_1, y_1)
x_0y_0 = \text{Recursive-Multiply}(x_0, y_0)
Return x_1y_1 \cdot 2^n + (p - x_1y_1 - x_0y_0) \cdot 2^{n/2} + x_0y_0
```

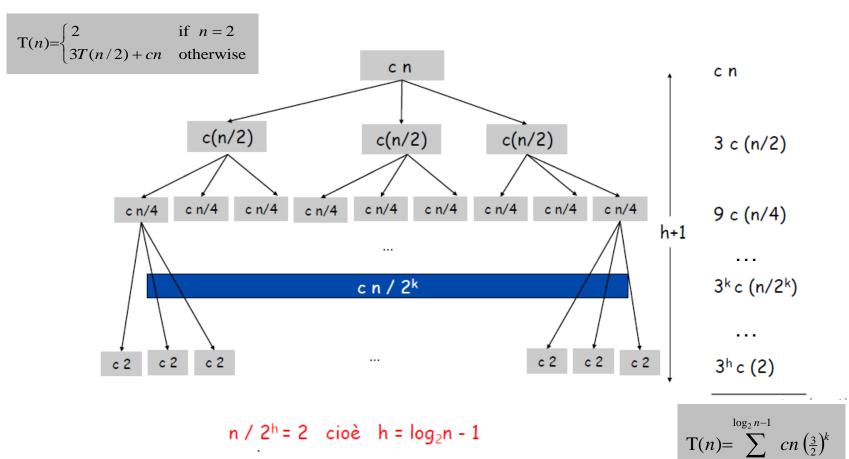
$$T(n) \leq \underbrace{T(\lfloor n/2 \rfloor) + T(\lceil n/2 \rceil) + T(1+\lceil n/2 \rceil)}_{\text{recursive calls}} + \underbrace{\Theta(n)}_{\text{add, subtract, shift}}$$

$$\Rightarrow T(n) = O(n^{\log_2 3}) = O(n^{1.585})$$

Per semplificare risolveremo:

$$T(n) = \begin{cases} 2 & \text{if } n = 2\\ 3T(n/2) + n & \text{otherwise} \end{cases}$$

Soluzione con albero di ricorsione



Un po' di calcoli...

$$T(n) = \sum_{k=0}^{\log_2 n - 1} cn \left(\frac{3}{2}\right)^k = cn \sum_{k=0}^{\log_2 n - 1} \left(\frac{3}{2}\right)^k = cn \frac{\left(\frac{3}{2}\right)^{\log_2 n} - 1}{\frac{3}{2} - 1} = cn \frac{\left(\frac{3}{2}\right)^{\log_2 n} - 1}{\frac{1}{2}}$$

$$\leq cn \frac{\left(\frac{3}{2}\right)^{\log_2 n}}{\frac{1}{2}} = 2cn \frac{3^{\log_2 n}}{2^{\log_2 n}} = 2c \times 3^{\log_2 n} = 2c \times n^{\log_2 3}$$

$$T(n) = O(n^{\log_2 3})$$

MEMENTO (da ricordare)
$$\sum_{k=0}^{N} a^k = \frac{a^{1+N} - 1}{a - 1}$$

Inoltre:
$$\sum_{k=0}^{N} a^k \le \sum_{k=0}^{\infty} a^k = \lim_{n \to \infty} \frac{a^{1+N} - 1}{a - 1} = \begin{cases} \frac{1}{1 - a} & \text{se } a < 1 \\ & \text{diverge} \end{cases}$$

Matrix Multiplication and decimal wars!

(non in programma, lettura facoltativa)

Matrix Multiplication

Matrix multiplication. Given two n-by-n matrices A and B, compute C = AB.

$$c_{ij} = \sum_{k=1}^n a_{ik} b_{kj}$$

$$C_{ij} = \sum_{k=1}^{n} a_{ik} b_{kj} \begin{bmatrix} c_{11} & c_{12} & \cdots & c_{1n} \\ c_{21} & c_{22} & \cdots & c_{2n} \\ \vdots & \vdots & \ddots & \vdots \\ c_{n1} & c_{n2} & \cdots & c_{nn} \end{bmatrix} = \begin{bmatrix} a_{11} & a_{12} & \cdots & a_{1n} \\ a_{21} & a_{22} & \cdots & a_{2n} \\ \vdots & \vdots & \ddots & \vdots \\ a_{n1} & a_{n2} & \cdots & a_{nn} \end{bmatrix} \times \begin{bmatrix} b_{11} & b_{12} & \cdots & b_{1n} \\ b_{21} & b_{22} & \cdots & b_{2n} \\ \vdots & \vdots & \ddots & \vdots \\ b_{n1} & b_{n2} & \cdots & b_{nn} \end{bmatrix}$$

Matrix Multiplication: Warmup

Divide-and-conquer.

Divide: partition A and B into ½n-by-½n blocks.

Conquer: multiply 8 ½n-by-½n recursively.

Combine: add appropriate products using 4 matrix additions.

$$\begin{bmatrix} C_{11} & C_{12} \\ C_{21} & C_{22} \end{bmatrix} = \begin{bmatrix} A_{11} & A_{12} \\ A_{21} & A_{22} \end{bmatrix} \times \begin{bmatrix} B_{11} & B_{12} \\ B_{21} & B_{22} \end{bmatrix}$$

$$C_{11} = (A_{11} \times B_{11}) + (A_{12} \times B_{21})$$

$$C_{12} = (A_{11} \times B_{12}) + (A_{12} \times B_{22})$$

$$C_{21} = (A_{21} \times B_{11}) + (A_{22} \times B_{21})$$

$$C_{22} = (A_{21} \times B_{12}) + (A_{22} \times B_{22})$$

$$T(n) = \underbrace{8T(n/2)}_{\text{recursive calls}} + \underbrace{\Theta(n^2)}_{\text{add, form submatrices}} \Rightarrow T(n) = \Theta(n^3)$$

Matrix Multiplication: Key Idea

Key idea. multiply 2-by-2 block matrices with only 7 multiplications.

$$\begin{bmatrix} C_{11} & C_{12} \\ C_{21} & C_{22} \end{bmatrix} = \begin{bmatrix} A_{11} & A_{12} \\ A_{21} & A_{22} \end{bmatrix} \times \begin{bmatrix} B_{11} & B_{12} \\ B_{21} & B_{22} \end{bmatrix}$$

$$C_{11} = P_5 + P_4 - P_2 + P_6$$

$$C_{12} = P_1 + P_2$$

$$C_{21} = P_3 + P_4$$

$$C_{22} = P_5 + P_1 - P_3 - P_7$$

$$P_{1} = A_{11} \times (B_{12} - B_{22})$$

$$P_{2} = (A_{11} + A_{12}) \times B_{22}$$

$$P_{3} = (A_{21} + A_{22}) \times B_{11}$$

$$P_{4} = A_{22} \times (B_{21} - B_{11})$$

$$P_{5} = (A_{11} + A_{22}) \times (B_{11} + B_{22})$$

$$P_{6} = (A_{12} - A_{22}) \times (B_{21} + B_{22})$$

$$P_{7} = (A_{11} - A_{21}) \times (B_{11} + B_{12})$$

Fast Matrix Multiplication

Fast matrix multiplication. (Strassen, 1969)

Divide: partition A and B into ½n-by-½n blocks.

Compute: 14 ½n-by-½n matrices via 10 matrix additions.

Conquer: multiply 7 ½n-by-½n matrices recursively.

Combine: 7 products into 4 terms using 8 matrix additions.

Analysis.

Assume n is a power of 2.

T(n) = # arithmetic operations.

$$T(n) = \underbrace{7T(n/2)}_{\text{recursive calls}} + \underbrace{\Theta(n^2)}_{\text{add, subtract}} \implies T(n) = \Theta(n^{\log_2 7}) = O(n^{2.81})$$

Fast Matrix Multiplication in Theory

- Q. Multiply two 2-by-2 matrices with only 7 scalar multiplications?
- A. Yes! [Strassen, 1969]

$$\Theta(n^{\log_2 7}) = O(n^{2.81})$$

- Q. Multiply two 2-by-2 matrices with only 6 scalar multiplications?
- A. Impossible. [Hopcroft and Kerr, 1971]

$$\Theta(n^{\log_2 6}) = O(n^{2.59})$$

- Q. Two 3-by-3 matrices with only 21 scalar multiplications?
- A. Also impossible.

$$\Theta(n^{\log_3 21}) = O(n^{2.77})$$

- Q. Two 70-by-70 matrices with only 143,640 scalar multiplications?
- A. Yes! [Pan, 1980]

$$\Theta(n^{\log_{70} 143640}) = O(n^{2.80})$$

Decimal wars!

December, 1979: O(n^{2.521813})

January, 1980: O(n^{2.521801})

Fast Matrix Multiplication in Theory

Best known. O(n^{2,376}) [Coppersmith-Winograd, 1987.]

Conjecture. $O(n^{2+\epsilon})$ for any $\epsilon > 0$.

Caveat. Theoretical improvements to Strassen are progressively less practical.

6.6 Sequence Alignment

E' capitato anche a voi?

Di digitare sul computer una parola in maniera sbagliata (per esempio usando un dizionario sul Web):

AGORITNI

E sentirsi chiedere:

«Forse cercavi ALGORITMI?»

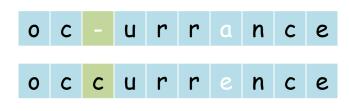
Come fanno a capirlo? Sanno veramente cosa abbiamo in mente????

Non trovando AGORITNI sul dizionario ha cercato una parola «simile», «vicina»

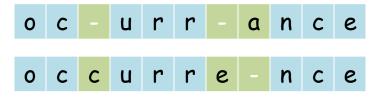
String Similarity

How similar are two strings?

ocurrance occurrence



1 mismatch, 1 gap



0 mismatches, 3 gaps

Edit Distance

Applications.

Basis for Unix diff

Speech recognition

Computational biology (sequenze di simboli nel DNA rappresentano proprietà degli organismi)

Edit distance. [Levenshtein 1966, Needleman-Wunsch 1970]

Gap penalty δ ; mismatch penalty α_{pq} (you may assume α_{pp} =0).

Cost = sum of gap and mismatch penalties.

$$\alpha_{TC} + \alpha_{GT} + \alpha_{AG} + 2\alpha_{CA}$$

$$2\delta + \alpha_{CA}$$

Sequence Alignment

Goal: Given two strings $X = x_1 x_2 ... x_m$ and $Y = y_1 y_2 ... y_n$ find alignment of minimum cost.

Def. An alignment M is a set of ordered pairs x_i-y_j such that each item occurs in at most one pair and no crossings.

Def. The pair x_i-y_j and $x_{i'}-y_{j'}$ cross if i < i', but j > j'.

$$cost(M) = \underbrace{\sum_{(x_i, y_j) \in M} \alpha_{x_i y_j}}_{\text{mismatch}} + \underbrace{\sum_{i: x_i \text{ unmatched}} \delta + \sum_{j: y_j \text{ unmatched}} \delta}_{\text{gap}}$$

Ex: CTACCG VS TACATG.

Sol:
$$M = x_2 - y_1, x_3 - y_2, x_4 - y_3, x_5 - y_4, x_6 - y_6.$$

 X_1 X_2 X_3 X_4 X_5

Sequence Alignment: Problem Structure

Def. OPT(i, j) = min cost of aligning strings $x_1 x_2 ... x_i$ and $y_1 y_2 ... y_j$.

Case 1: OPT matches x_i-y_j .

pay mismatch for x_i-y_j+m min cost of aligning two strings $x_1 x_2 \dots x_{i-1}$ and $y_1 y_2 \dots y_{j-1}$

Case 2a: OPT leaves x_i unmatched.

pay gap for x_i and min cost of aligning $x_1 x_2 \dots x_{i-1}$ and $y_1 y_2 \dots y_j$

Case 2b: OPT leaves y unmatched.

pay gap for y_j and min cost of aligning $x_1\,x_2\ldots x_i$ and $y_1\,y_2\ldots y_{j-1}$

$$OPT(i,j) = \begin{cases} j\delta & \text{if } i = 0 \\ \alpha_{x_i y_j} + OPT(i-1, j-1) \\ \delta + OPT(i-1, j) & \text{otherwise} \\ \delta + OPT(i, j-1) & \text{if } j = 0 \end{cases}$$

Sequence Alignment: Algorithm

```
Sequence-Alignment(m, n, x_1x_2...x_m, y_1y_2...y_n, \delta, \alpha) {
   for i = 0 to m
      M[0, i] = i\delta
   for j = 0 to n
      M[i, 0] = i\delta
   for i = 1 to m
       for j = 1 to n
          M[i, j] = min(\alpha[x_i, y_j] + M[i-1, j-1],
                            \delta + M[i-1, j],
                            \delta + M[i, j-1]
   return M[m, n]
```

Analysis. $\Theta(mn)$ time and space.

English words or sentences: $m, n \le 10$.

Computational biology: m = n = 100,000.10 billions ops OK, but 10GB array?

Sequence Alignment: Linear Space

Q. Can we avoid using quadratic space?

Easy. Optimal value in O(m + n) space and O(mn) time. Compute OPT(i, •) from OPT(i-1, •).

No longer a simple way to recover alignment itself.

Theorem. [Hirschberg 1975]
Optimal alignment in O(m + n) space and O(mn) time.

Clever combination of divide-and-conquer and dynamic programming. Inspired by idea of Savitch from complexity theory.

Ricostruzione dell'allineamento

$$OPT(i,j) = \begin{cases} j\delta & \text{if } i = 0 \\ \\ \min \begin{cases} \alpha_{x_iy_j} + OPT(i-1,j-1) \\ \\ \delta + OPT(i-1,j) \\ \\ \delta + OPT(i,j-1) \end{cases} & \text{otherwise} \\ i\delta & \text{if } j = 0 \end{cases}$$

Per ricostruire l'allineamento seguiamo il percorso all'indietro nella matrice

2

$$\delta$$
 = 2

costo mismatch fra vocali differenti=1
costo mismatch fra consonanti differenti=1
costo mismatch fra vocale e consonante=3
La freccia nella casella (i,j) proviene dalla
casella usata per ottenere il minimo

$$M[4,4] = min\{\alpha_{ne} + M[3,3], \delta + M[3,4], \delta + M[4,3]\}$$

= min { 3+ 5, 2+5, 2+4} = 6

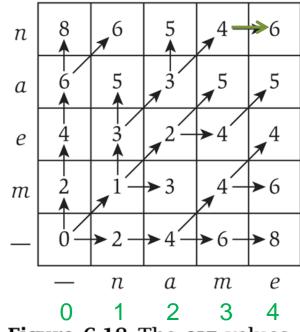


Figure 6.18 The OPT values for the problem of aligning the words *mean* to *name*.

Ricostruzione soluzione ottima

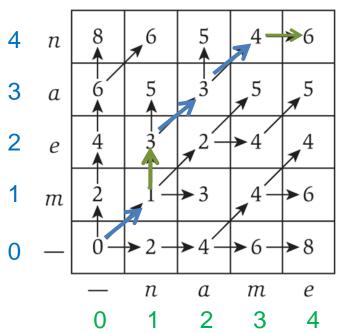
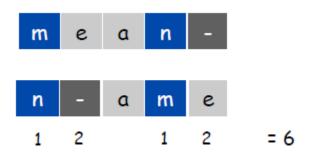
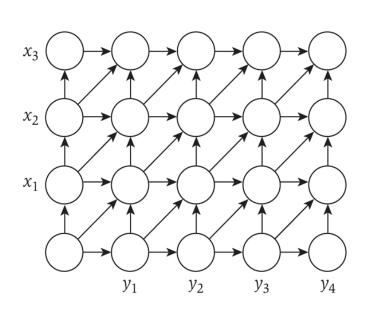


Figure 6.18 The OPT values for the problem of aligning the words *mean* to *name*.



Una visione grafica del problema del sequence alignment

Ad $X = x_1 x_2 x_3$ e $Y = y_1 y_2 y_3 y_4$ associamo il grafo G_{XY} seguente:

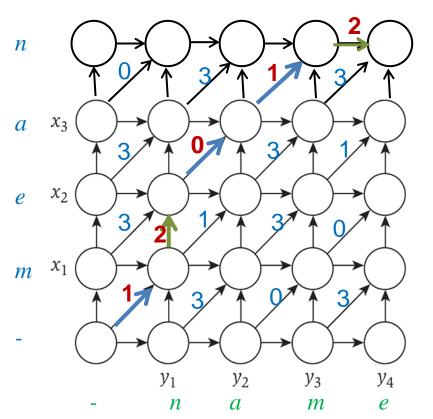


nodo (i,j) in corrispondenza di x_i e y_j

costi archi orizzontali e verticali = δ costo arco diagonale verso (i,j) = $\alpha_{xi,yj}$

Figure 6.17 A graph-based picture of sequence alignment.

Un esempio



costi archi orizzontali e verticali = δ costo arco diagonale verso (i,j) = $\alpha_{xi, yj}$

$$\delta = 2$$

costo mismatch fra vocali differenti=1 costo mismatch fra consonanti differenti=1 costo mismatch fra vocale econsonante=3

Figure 6.17 A graph-based picture of sequence alignment.

Trovare allineamento di costo minimo fra X e Y equivale a cercare il cammino di costo minimo in G_{XY} dal nodo in basso a sinistra a quello in alto a destra. Prova per induzione (fare)

Studieremo algoritmi per la ricerca di cammini di costo minimo in un grafo, ma non apporteranno miglioramenti al tempo di esecuzione.

Esercizi: varianti al problema dello zaino

Problema dello zaino: Esercizio 1

Si descriva ed analizzi un algoritmo per la seguente variazione del problema dello zaino: Dati n oggetti di peso $w_1, w_2, ..., w_n$ e valore $v_1, v_2, ..., v_n$ ed uno zaino di capacità W (tutti gli input sono >0), trovare il massimo valore di un sottoinsieme degli oggetti il cui peso totale è al massimo W, con la condizione che ogni oggetto può essere preso anche più di una volta.

(La variazione rispetto al problema del testo, consiste nel superamento del vincolo che ogni oggetto poteva essere preso al massimo una sola volta.)

Problema dello zaino: Esercizio 2

Si descriva ed analizzi un algoritmo per la seguente variazione del problema dello zaino: Dati n oggetti di peso $w_1, w_2, ..., w_n$ e valore $v_1, v_2, ..., v_n$ ed uno zaino di capacità W (tutti gli input sono >0), trovare il massimo valore di un sottoinsieme degli oggetti il cui peso totale è al massimo W, con la condizione che ogni oggetto può essere preso al massimo 2 volte.

(La variazione rispetto al problema del testo, consiste nel superamento del vincolo che ogni oggetto poteva essere preso al massimo una sola volta.)

Problema dello zaino: Esercizio 3

Si descriva ed analizzi un algoritmo per la seguente variazione del problema dello zaino: Dati n oggetti di peso $w_1, w_2, ..., w_n$ e valore $v_1, v_2, ..., v_n$ ed uno zaino di capacità W (tutti gli input sono >0), trovare il massimo valore di un sottoinsieme degli oggetti il cui peso totale è al massimo W, con la condizione che non possono essere presi due oggetti con indici consecutivi (ovvero gli oggetti i-esimo ed (i+1)-esimo, per i=1,2,...,n-1).

Dall'elenco

Esercizio 1

Lungo un fiume ci sono n approdi. A ciascuno di questi approdi é possibile fittare una canoa che puó essere restituita ad un altro approdo. E' praticamente impossibile andare controcorrente. Il costo del fitto di una canoa da un punto di partenza i ad un punto di arrivo j, con i < j, é denotato con C(i, j). E' possibile che per andare da i a j sia più economico effettuare alcune soste e cambiare la canoa piuttosto che fittare una unica canoa. Se si fitta una nuova canoa in $k_1 < k_2 < ... < k_l$ allora il costo totale per il fitto é $C(i, k_1) + C(k_1, k_2) + ... + C(k_{l-1}, k_l) + C(k_l, j)$.

Descrivere un algoritmo che dato in input i costi C(i, j), determini il costo minimo per recarsi da 1 ad n. Analizzare la complessitá dell'algoritmo proposto.

Esempio. Sia n=4, e C(1,2)=1, C(1,3)=2, C(1,4)=4, C(2,3)=1, C(2,4)=1, C(3,4)=1. Allora i possibili modi per andare da 1 a 4 sono: $1 \to 4$, $1 \to 2 \to 4$, $1 \to 3 \to 4$, $1 \to 2 \to 3 \to 4$. I rispettivi costi sono: 4, 2, 3, 3. Il costo minimo é quindi 2.

Suggerimento: si usi la tecnica della scelta binaria.

Dall'elenco

Esercizio 2

Sia dato un grafo orientato con n vertici v_1, v_2, \ldots, v_n in cui sono presenti solo gli archi $v_i \to v_j$ con i < j e ad ogni arco $v_i \to v_j$ é associato un costo $c_{i,j}$, dove $c_{i,j}$ é un intero positivo.

Descrivere ed analizzare un algoritmo che, dato k, con $0 \le k \le n-2$, computi il costo minimo di un cammino da v_1 a v_n che attraversi esattamente altri k vertici.

Esempio. Sia G un grafo con 5 vertici v_1, v_2, v_3, v_4, v_5 e sia $c_{i,j} = (2j-i)$, con i < j, il costo associato all'arco $v_i \to v_j$. Sia k = 2. Allora i cammini da v_1 a v_5 che attraversano esattamente altri 2 vertici sono: $v_1 \to v_2 \to v_3 \to v_5$, $v_1 \to v_2 \to v_4 \to v_5$, $v_1 \to v_3 \to v_4 \to v_5$, i cui costi sono, rispettivamente, 14, 15, e 16.

Suggerimento: si usi la tecnica dell'aggiunta di una variabile.

Esercizio 1 pag. 312 KT punto a) [continua...]

Exercises

1. Let G = (V, E) be an undirected graph with n nodes. Recall that a subset of the nodes is called an *independent set* if no two of them are joined by an edge. Finding large independent sets is difficult in general; but here we'll see that it can be done efficiently if the graph is "simple" enough.

Call a graph G = (V, E) a *path* if its nodes can be written as v_1, v_2, \ldots, v_n , with an edge between v_i and v_j if and only if the numbers i and j differ by exactly 1. With each node v_i , we associate a positive integer *weight* w_i .

Consider, for example, the five-node path drawn in Figure 6.28. The weights are the numbers drawn inside the nodes.

The goal in this question is to solve the following problem:

Find an independent set in a path G whose total weight is as large as possible.

(a) Give an example to show that the following algorithm does not always find an independent set of maximum total weight.

```
The "heaviest-first" greedy algorithm Start with S equal to the empty set While some node remains in G
Pick a node v_i of maximum weight Add v_i to S
Delete v_i and its neighbors from G
Endwhile Return S
```

Esercizio 1 pag. 312 KT punti b) e c)

(b) Give an example to show that the following algorithm also does not always find an independent set of maximum total weight.

> Let S_1 be the set of all v_i where i is an odd number Let S_2 be the set of all v_i where i is an even number (Note that S_1 and S_2 are both independent sets) Determine which of S_1 or S_2 has greater total weight, and return this one

Figure 6.28 A paths with weights on the nodes. The maximum weight of an independent set is 14.

(c) Give an algorithm that takes an *n*-node path *G* with weights and returns an independent set of maximum total weight. The running time should be polynomial in *n*, independent of the values of the weights.

Tipici tempi di esecuzione e Divide-et-Impera

Linear Time: O(n)

Linear time. Running time is at most a constant factor times the size of the input.

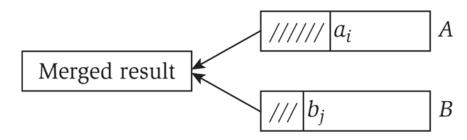
```
max \( \tau a_1 \)
for i = 2 to n {
   if (a_i > max)
      max \( \tau a_i \)
}
```

Computing the maximum. Compute maximum of n numbers $a_1, ..., a_n$.

Linear Time: O(n)

Merge. Combine two sorted lists $A = a_1, a_2, ..., a_n$ with B =

 $b_1, b_2, ..., b_n$ into sorted whole.



```
\label{eq:continuous_posterior} \begin{split} &i=1,\ j=1\\ &\text{while (both lists are nonempty) } \{\\ &\quad \text{if } (a_i \leq b_j) \text{ append } a_i \text{ to output list and increment i}\\ &\quad \text{else} (a_i \leq b_j) \text{ append } b_j \text{ to output list and increment j}\\ &\}\\ &\quad \text{append remainder of nonempty list to output list} \end{split}
```

Claim. Merging two lists of size n takes O(n) time.

Pf. After each comparison, the length of output list increases by 1.

Quadratic Time: O(n²)

Quadratic time. Enumerate all pairs of elements.

Closest pair of points. Given a list of n points in the plane $(x_1, y_1), ..., (x_n, y_n)$, find the pair that is closest.

O(n²) solution. Try all pairs of points.

```
min \leftarrow (x_1 - x_2)^2 + (y_1 - y_2)^2

for i = 1 to n {

  for j = i+1 to n {

    d \leftarrow (x_i - x_j)^2 + (y_i - y_j)^2

    if (d < min)

      min \leftarrow d

}
```

don't need to take square roots

Cubic Time: O(n³)

Cubic time. Enumerate all triples of elements.

Set disjointness. Given n sets S_1 , ..., S_n each of which is a subset of 1, 2, ..., n, is there some pair of these which are disjoint?

```
foreach set S<sub>i</sub> {
   foreach other set S<sub>j</sub> {
     foreach element p of S<sub>i</sub> {
        determine whether p also belongs to S<sub>j</sub>
     }
     if (no element of S<sub>i</sub> belongs to S<sub>j</sub>)
        report that S<sub>i</sub> and S<sub>j</sub> are disjoint
   }
}
```

O(n³) solution. For each pairs of sets, determine if they are disjoint.

Polynomial Time: O(nk) Time

Independent set of size k. Given a graph, are there k nodes such that no two are joined by an edge?

k is a constant

O(n^k) solution. Enumerate all subsets of k nodes.

```
foreach subset S of k nodes {
   check whether S in an
  independent set
   if (S is an independent set)
      report S is an independent
  set
   }
}
```

Check whether S is an independent set = $O(k^2)$.

Number of k element subsets = $\binom{n}{k} = \frac{n(n-1)(n-2)\cdots(n-k+1)}{k(k-1)(k-2)\cdots(2)(1)} \le \frac{n^k}{k!}$

Exponential Time

Independent set. Given a graph, what is maximum size of an independent set?

O(n² 2ⁿ) solution. Enumerate all subsets.

```
S* ← φ
foreach subset S of nodes {
   check whether S in an independent set
   if (S is largest independent set seen so far)
      update S* ← S
   }
}
```

Note the differences with Independent set of size k.

Sub-linear Time: O(log n)

Tempo lineare: esamina tutto l'input eseguendo operazioni di tempo costante ad ogni passo

Tempo sub-lineare: Non è necessario esaminare tutto l'input!

Esempio. Ricerca binaria: ricerca di un elemento in un array ordinato (per esempio un vocabolario)

Tempo Logaritmico: $O(\log n)$

Esempio: Ricerca Binaria. Data una lista ordinata $A = a_1, \dots a_n$ ed un valore key, determina l'indice i per cui $a_i = key$, se esso esiste.

```
first \leftarrow 1, last \leftarrow n
while (first ≤ last)
     mid \leftarrow (first + last)/2; (calcola punto mediano)
     if (\text{key} > a_{\text{mid}})
       first = mid + 1; (ripete la ricerca nella metà di destra)
          else if (key < a_{mid})
            last = mid - 1; (ripete la ricerca nella metà di sinistra)
     else
          return(mid)
return(non c'è)
```

Analisi

```
\begin{aligned} & \textbf{first} \leftarrow 1, \texttt{last} \leftarrow n \\ & \textbf{while} \, (\texttt{first} \leq \texttt{last}) \\ & \texttt{mid} \leftarrow (\texttt{first} + \texttt{last})/2; \, (\texttt{calcola punto mediano}) \\ & \textbf{if} \, (\texttt{key} > a_{\texttt{mid}}) \\ & \texttt{first} = \texttt{mid} + 1; \, (\texttt{ripete la ricerca nella metà di destra}) \\ & \textbf{else if} \, (\texttt{key} < a_{\texttt{mid}}) \\ & \texttt{last} = \texttt{mid} - 1; \, (\texttt{ripete la ricerca nella metà di sinistra}) \\ & \textbf{else} \\ & \textbf{return}(\texttt{mid}) \\ & \textbf{return}(\texttt{non c'è}) \end{aligned}
```

Dopo la prima iterazione, al più l'algoritmo rieffettua la ricerca su n/2 elementi dopo la seconda iterazione, al più l'algoritmo rieffettua la ricerca su $n/4 = n/2^2$ elementi, . . . dopo la k-esima iterazione, al più l'algoritmo rieffettua la ricerca su $= n/2^k$ elementi. L'algoritmo si fermerà sicuramente al **primo** k per cui $= n/2^k \le 1$ (se non prima) $\Rightarrow k = O(\log n) \Rightarrow$ poichè il numero di operazioni in ciascuna delle $O(\log n)$ iterazioni è costante, il tempo di esecuzione totale è $O(\log n)$

O(n log n) Time

Molto comune perché

- E' il running time di algoritmi divide-and-conquer che dividono l'input in due parti, le risolvono ricorsivamente e poi combinano le soluzioni in tempo lineare.
- Running time di algoritmi di ordinamento.
 Mergesort and Heapsort hanno usano O(n log n) confronti.
- Molti algoritmi usano l'ordinamento come passo più costoso.
 Per esempio molti algoritmi basati sulla tecnica greedy

Divide-and-Conquer

"Divide et impera"
Giulio Cesare

Divide-and-conquer.

- Break up problem into several parts.
- Solve each part recursively.
- Combine solutions to sub-problems into overall solution.

Examples: Binary Search, Mergesort,

Ricerca binaria (versione D-et-I)

Divide - et - Impera

- Dividi il problema in sottoproblemi
- Risolvi ogni sottoproblema ricorsivamente
- Combina le soluzioni ai sottoproblemi per ottenere la soluzione al problema

Ricerca binaria:

- Dividi l'array a metà (determinando l'elemento di mezzo)
- Risolvi ricorsivamente sulla metà di destra o di sinistra o su nessuna (a secondo del confronto con l'elemento di mezzo)
- Niente

Sorting

Sorting. Given n elements, rearrange in ascending order.

Obvious sorting applications.

List files in a directory.

Organize an MP3 library.

List names in a phone book.

Display Google PageRank

results.

Problems become easier once sorted.

Find the median.

Find the closest pair.

Binary search in a database.

Identify statistical outliers.

Find duplicates in a mailing.

list

Non-obvious sorting applications.

Data compression.

Computer graphics.

Interval scheduling.

Computational biology.

Minimum spanning tree.

Supply chain management.

Simulate a system of particles.

Book recommendations on

Amazon.

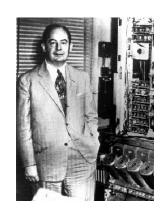
Load balancing on a parallel computer.

. . .

Mergesort

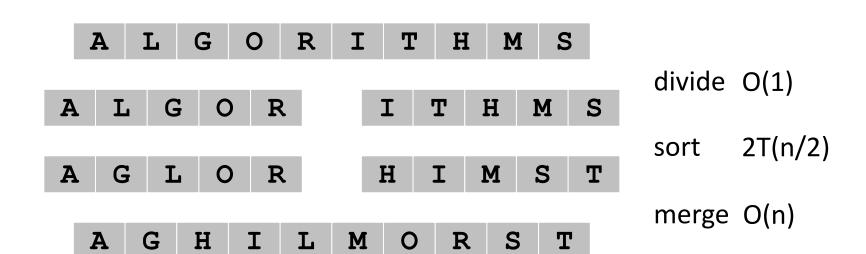
Mergesort.

- Divide array into two halves.
- Recursively sort each half.



Jon von Neumann (1945)

Merge two halves to make sorted whole.



Mergesort

Mergesort su una sequenza **S** con **n** elementi consiste di tre passi:

- 1. <u>Divide</u>: separa *S* in due sequenze *S*1 e *S*2, ognuna di circa *n*/2 elementi;
- 2. Ricorsione: ricorsivamente ordina \$1 e \$2
- 3. Conquer (impera): unisci **\$**1 e **\$**2 in un'unica sequenza *ordinata*

Mergesort

```
MERGE-SORT (A, p, r)

1 if p < r

2 then q \leftarrow \lfloor (p + r)/2 \rfloor

3 MERGE-SORT (A, p, q)

4 MERGE-SORT (A, q + 1, r)

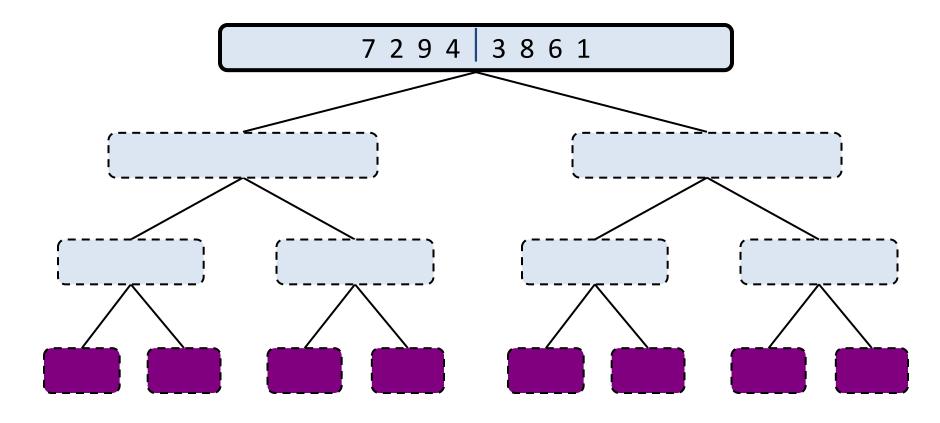
5 MERGE (A, p, q, r)
```

Supponendo che:

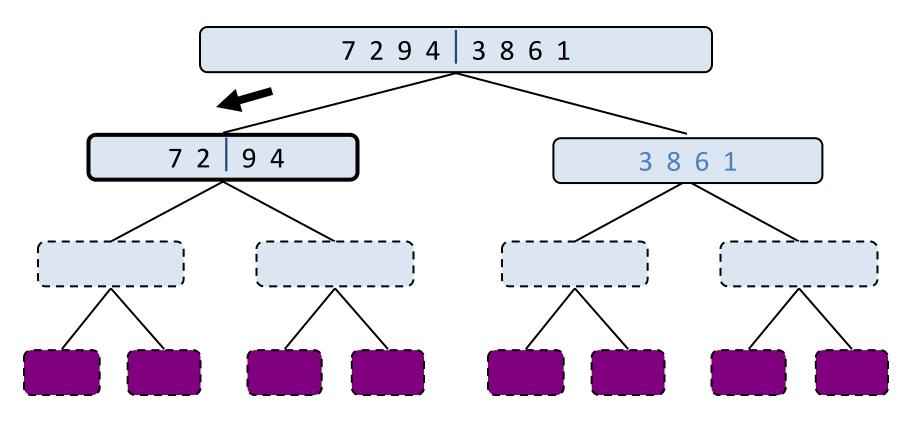
la sequenza sia data come un array A[p, ..., r] con n=r-p+1 elementi, MERGE(A, p, q, r) «fonda» le sequenze A[p, ..., q] e A[q+1, ..., r]

Esempio di esecuzione di MergeSort

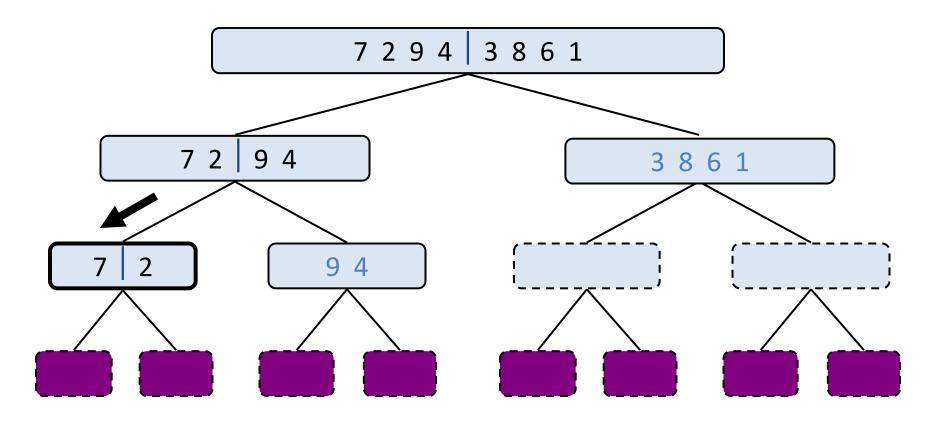
• Divide



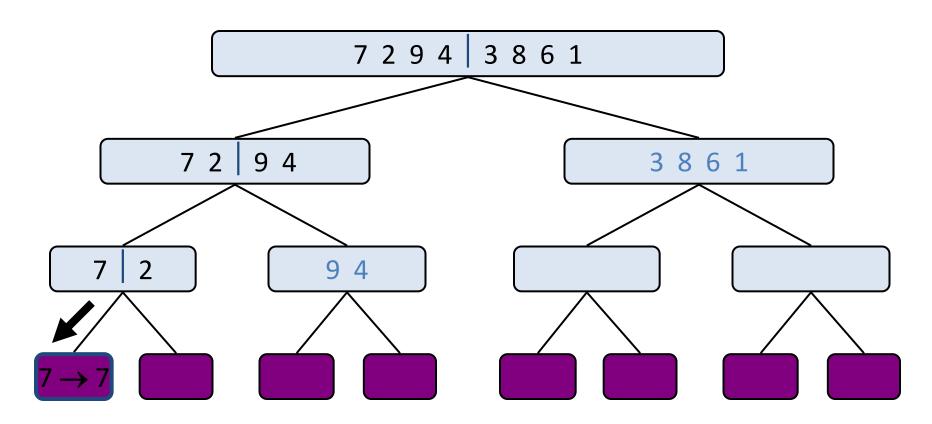
Chiamata ricorsiva, divide



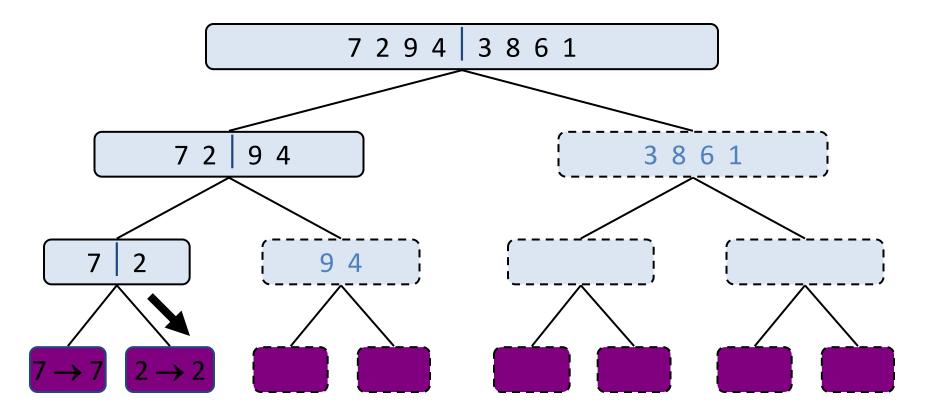
Chiamata ricorsiva, divide



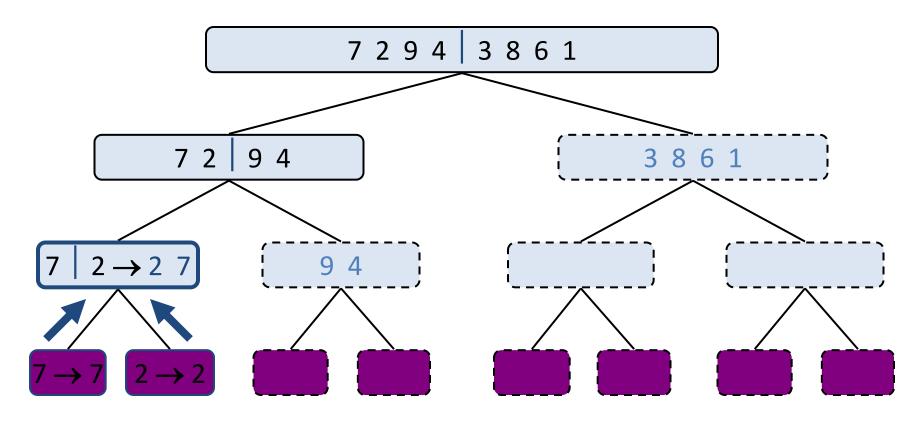
Chiamata ricorsiva: caso base



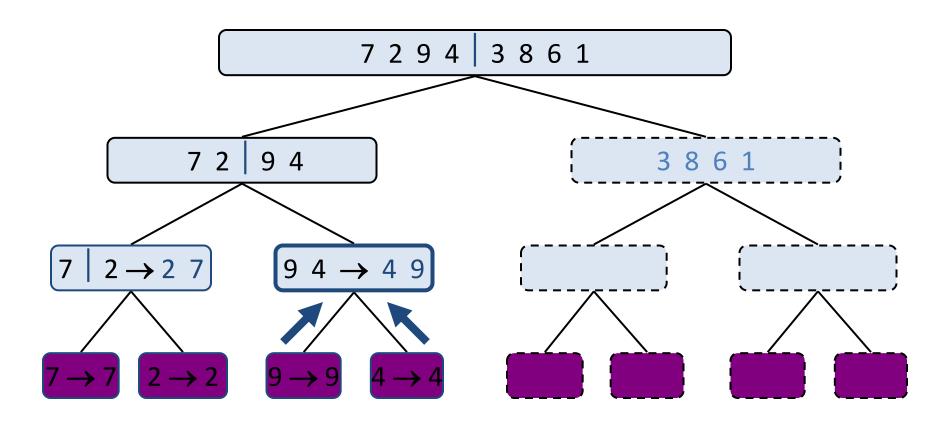
Chiamata ricorsiva: caso base



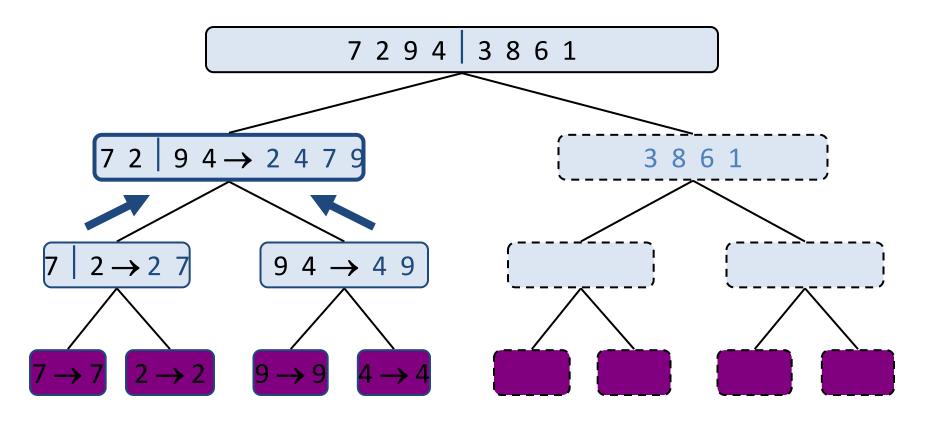
Merge



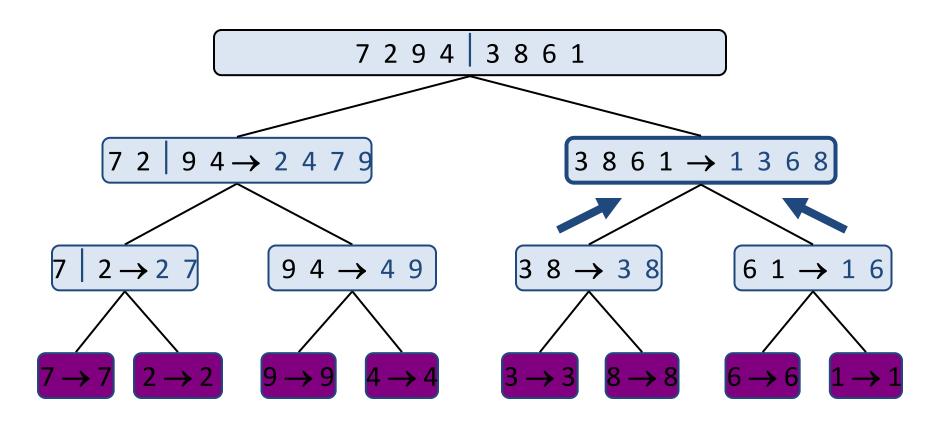
• Chiamata ricorsiva, ..., caso base, merge



Merge

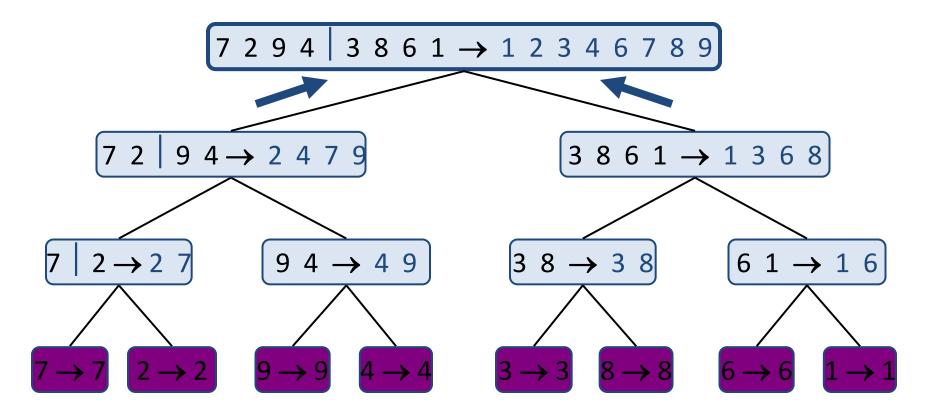


• Chiamata ricorsiva, ..., merge, merge



Esempio di esecuzione (fine)

Ultimo Merge



Tempo di esecuzione di Mergesort

```
MERGE-SORT (A, p, r)

1 if p < r

2 then q \leftarrow \lfloor (p + r)/2 \rfloor

3 MERGE-SORT (A, p, q)

4 MERGE-SORT (A, q + 1, r)

5 MERGE (A, p, q, r)
```

Come si calcola il tempo di esecuzione di un algoritmo ricorsivo?

E in particolare:

Come si calcola il tempo di esecuzione di un algoritmo Divide et Impera?

A Recurrence Relation for Mergesort

Def. T(n) = number of comparisons to mergesort an input of size n.

Mergesort recurrence.

$$T(n) \le \begin{cases} \Theta(1) & \text{if } n = 1\\ T(\lceil n/2 \rceil) + T(\lceil n/2 \rceil) + \Theta(n) & \text{otherwise} \end{cases}$$

Solution. $T(n) = O(n \log_2 n)$.

Assorted proofs. We will describe several ways to prove this recurrence. Initially we assume n is a power of 2 and replace \leq with =.

A Recurrence Relation for Binary Search

Def. T(n) = number of comparisons to run Binary Search on an input of size n.

Binary Search recurrence.

$$T(n) \le \begin{cases} \Theta(1) & \text{if } n = 1 \\ \underline{T(\lfloor n/2 \rfloor)} + \underline{\Theta(1)} & \text{otherwise} \end{cases}$$
solve left or right half comparison

Solution. $T(n) = O(log_2 n)$ (constant in the best case).

Algoritmi ricorsivi

Schema di un algoritmo ricorsivo (su un'istanza \mathcal{I}):

```
ALGO (\mathcal{I})
```

If «caso base» then «esegui certe operazioni» else «esegui delle operazioni fra le quali $ALGO(\mathcal{J}_1), \ldots, ALGO(\mathcal{J}_k)$ »

Relazioni di ricorrenza per algoritmi ricorsivi

$$T(n) = \left\{ \begin{array}{ll} c & \text{se } n = n_0 \\ \\ aT(f(n)) + g(n) & \text{altrimenti} \end{array} \right.$$

- n₀ =base ricorsione, c =tempo di esecuzione per la base
- a =numero di volte che le chiamate ricorsive sono effettuate
- f(n) =taglia dei problemi risolti nelle chiamate ricorsive
- g(n) =tutto il tempo di calcolo non incluso nelle chiamate ricorsive

Relazioni di ricorrenza per algoritmi Divide-et-Impera

- Dividi il problema di taglia n in a sotto-problemi di taglia n/b
- Ricorsione sui sottoproblemi
- Combinazione delle soluzioni

T(n)= tempo di esecuzione su input di taglia n

$$T(n) = D(n) + a T(n/b) + C(n)$$

Nelle prossime lezioni....

Impareremo dei metodi per risolvere le relazioni di ricorrenza

6.5 RNA Secondary Structure

Struttura di una biomolecola

Biomolecola: DNA, RNA

Struttura primaria: descrizione esatta della sua composizione atomica e dei legami presenti fra gli atomi

Struttura secondaria: capacità di assumere una struttura spaziale regolare e ripetitiva

DNA

Struttura secondaria: doppia elica (Watson e Crick).

Ogni catena è composta da nucleotidi: A, C, G, T A (adenina), C (citosina), G (guanina), T (timina)

Le catene sono connesse da basi complementari: A-T, C-G

Ribonucleic acid (RNA)

Simile al DNA.

Singola catena con 4 nucleotidi: <u>adenine</u> (A), <u>cytosine</u> (C), <u>guanine</u> (G), <u>uracil</u> (U).

RNA. Stringa $B = b_1b_2...b_n$ su alfabeto $\{A, C, G, U\}$.

Struttura secondaria. RNA è una singola catena e tende a formare coppie di basi con se stessa. Questa struttura è essenziale per capire il comportamento delle molecole.

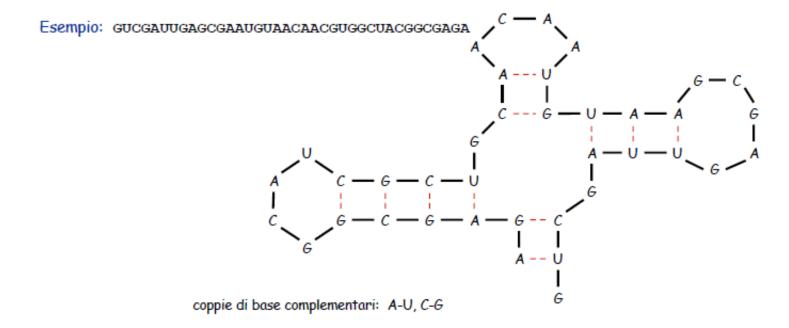
coppie di base complementari: A-U, C-G

Figure 6.13 An RNA secondary structure. Thick lines connect adjacent elements of the sequence; thin lines indicate pairs of elements that are matched.

RNA Secondary Structure

RNA. Stringa B = $b_1b_2...b_n$ su alfabeto { A, C, G, U }.

Struttura secondaria. RNA è una singola catena e tende a formare coppie di basi con se stessa. Questa struttura è essenziale per capire il comportamento delle molecole.



Per una stessa stringa di RNA possono esistere più strutture secondarie

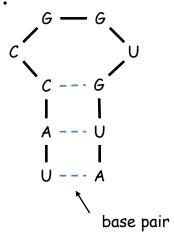
Two views of RNA secondary structure

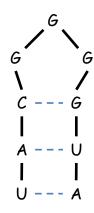


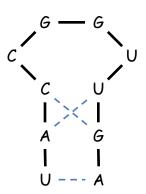
Figure 6.14 Two views of an RNA secondary structure. In the second view, (b), the string has been "stretched" lengthwise, and edges connecting matched pairs appear as noncrossing "bubbles" over the string.

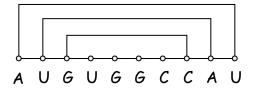
RNA Secondary Structure: Examples

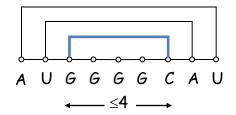
Examples.

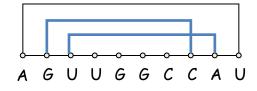












ok

sharp turn: no!

crossing: no!

RNA Secondary Structure

Secondary structure. A set of pairs $S = \{(b_i, b_j)\}$ that satisfy: [Watson-Crick.] S is a matching and each pair in S is a Watson-Crick complement: A-U, U-A, C-G, or G-C.

[No sharp turns.] The ends of each pair are separated by at least 4 intervening bases. If $(b_i, b_i) \in S$, then i < j - 4.

[Non-crossing.] If (b_i, b_j) and (b_k, b_l) are two pairs in S, then we cannot have i < k < j < l.

Free energy. Usual hypothesis is that an RNA molecule will form the secondary structure with the optimum total free energy.

approximate by number of base pairs

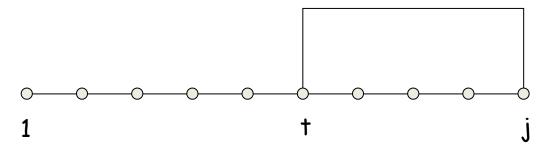
Goal. Given an RNA molecule $B = b_1b_2...b_n$, find a secondary structure S that maximizes the number of base pairs.

RNA Secondary Structure: Subproblems

First attempt. OPT(j) = maximum number of base pairs in a secondary structure of the substring $b_1b_2...b_j$.

Case 1: b_j is not involved in a pair: OPT(j)=OPT(j-1)

Case 2: b_j matches b_t for some 1≤t<j-4



Difficulty. Results in two sub-problems:

Finding secondary structure in: $b_1b_2...b_{t-1}$. $\leftarrow OPT(t-1)$

Finding secondary structure in: $b_{t+1}b_{t+2}...b_{j-1}$. \leftarrow need different sub-problems

Dynamic Programming Over Intervals

Notation. $OPT(i, j) = maximum number of base pairs in a secondary structure of the substring <math>b_i b_{i+1} ... b_j$.

Case 1. If
$$i \ge j - 4$$
.
 $OPT(i, j) = 0$ by no-sharp turns condition.

Case 2. Base
$$b_j$$
 is not involved in a pair.
 $OPT(i, j) = OPT(i, j-1)$

Case 3. Base b_j pairs with b_t for some $i \le t < j - 4$. non-crossing constraint (no match over t) decouples resulting sub-problems $OPT(i, j) = 1 + \max_t \{ OPT(i, t-1) + OPT(t+1, j-1) \}$ take max over t such that $i \le t < j-4$ and b_t and b_j are Watson-Crick complements

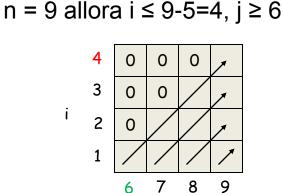
t-1 t t+1

Relazione di ricorrenza

OPT(i, j) = maximum number of base pairs in a secondary structure of the substring $b_i b_{i+1} ... b_j$ with i, j = 1, 2, ..., n

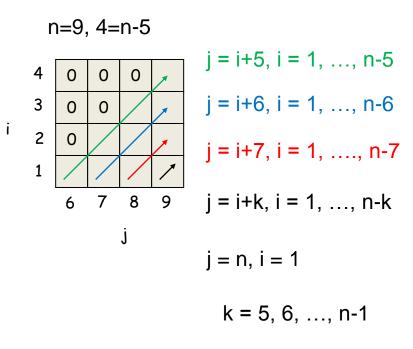
$$\begin{aligned} & \text{OPT}(i,j) = \left\{ \begin{array}{l} 0 & i \geq j-4 \\ & \text{OPT}(i,j-1) \\ & \max \left\{ \begin{array}{l} \text{OPT}(i,j-1) \\ \max \left\{ \begin{array}{l} b_j b_i \text{ complementi} \end{array} \right. \left\{ \left. 1 + \text{OPT}(i,t-1) + \text{OPT}(t+1,j-1) \right. \right\} \right. \\ & \text{altrimenti} \end{aligned} \right. \\ \end{aligned}$$

```
Caso generale: i < j - 4 ovvero i \le j-5, ovvero j \ge i+5 i = 1 allora j \ge 6 i = 2 allora j \ge 7 ... i = n-5 allora j \ge n i = n-4 allora j \ge n+1 ... i = n allora j \ge n+5
```



Bottom Up Dynamic Programming Over Intervals

- Q. What order to solve the sub-problems?
- A. Do shortest intervals first (from length 5 up to n-1).



Running time. $O(n^3)$.

Esempio

RNA sequence ACCGGUAGU

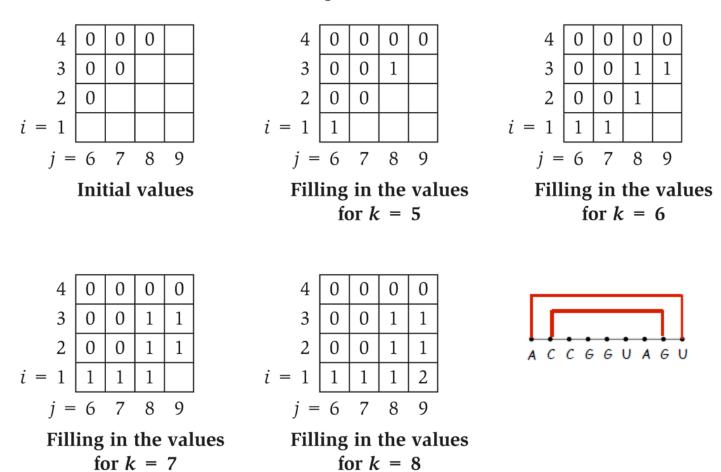
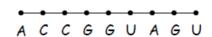


Figure 6.16 The iterations of the algorithm on a sample instance of the RNA Secondary Structure Prediction Problem.

RNA sequence ACCGGUAGU



$OPT(i, j) = max \begin{cases} OPT(i, j-1) \\ max \\ b_{j,b_{i} \text{ complement}} \end{cases}$	{ 1 + OPT(i, t-1) + OPT(t+1, j-1) }
--	-------------------------------------

Initial values

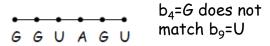
Filling in the values for k = 5

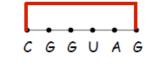
$$OPT(4, 9) = max \begin{cases} OPT(4, 8) = 0 \\ max \\ b_{b}b_{t} complementi \end{cases} \{ 1 + OPT(4, t-1) + OPT(t+1, 8) \} = 0$$

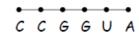
$$OPT(3, 8) = max \begin{cases} OPT(3, 7) = 0 \\ max \\ \frac{3_{sit} < 4}{b_8 b_i \text{ complementi}} \end{cases} \{ 1 + OPT(1, t-1) + OPT(t+1, 7) \} = 1$$

OPT(2, 7) = max
$$\begin{cases} OPT(2, 6) = 0 \\ max \\ b_1b_1 complementi \end{cases} \{ 1 + OPT(2, t-1) + OPT(t+1, 6) \} = 0$$

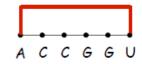
$$OPT(1, 6) = max \begin{cases} OPT(1, 5) = 0 \\ max \\ b_6b_1 complementi \end{cases} \{ 1 + OPT(1, t-1) + OPT(t+1, 5) \} = 1$$



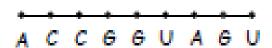




b₂=C does not match b₇=A



RNA sequence ACCGGUAGU



4	0	0	0	
3	0	0		
2	0			
= 1				
j =	6	7	8	9

	4	0	0	0	0
	3	0	0	1	1
	2	0	0	1	
į	= 1	1	1		
	j =	6	7	8	9

Initial values

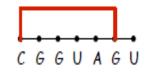
Filling in the values for k = 5

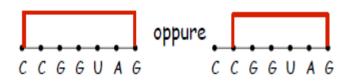
Filling in the values for k = 6

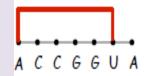
$$OPT(3,9) = \max \begin{cases} OPT(3,8) = 1 \\ \max_{3 \le t < 5} \{1 + OPT(3,t-1) + OPT(t+1,8)\} = 0 \\ b_9 = U, b_t \ compl. \end{cases}$$

$$OPT(2,8) = \max \begin{cases} OPT(2,7) = 0 \\ \max_{2 \le t < 4} \{1 + OPT(2,t-1) + OPT(t+1,7)\} = 1 \\ b_8 = G, b_t \ compl. \end{cases}$$

$$OPT(1,7) = \max \begin{cases} OPT(1,6) = 1 \\ \max_{1 \le t < 3} \{1 + OPT(1,t-1) + OPT(t+1,6)\} = 0 \\ b_7 = A, b_t \ compt. \end{cases}$$







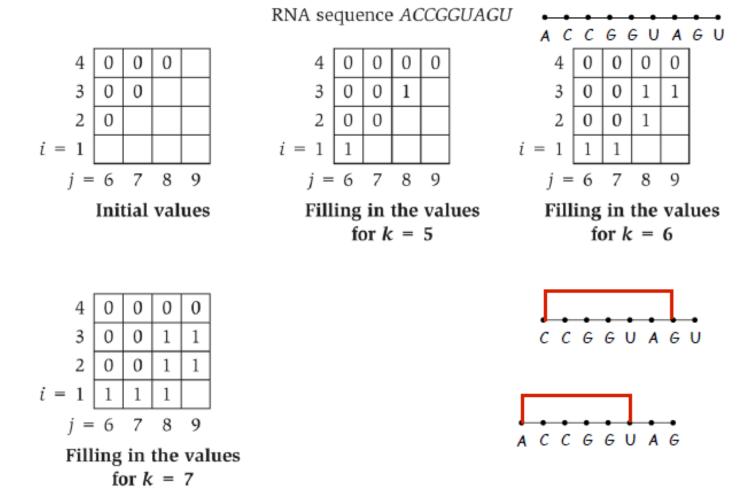


Figure 6.16 The iterations of the algorithm on a sample instance of the RNA Secondary Structure Prediction Problem.

RNA sequence ACCGGUAGU

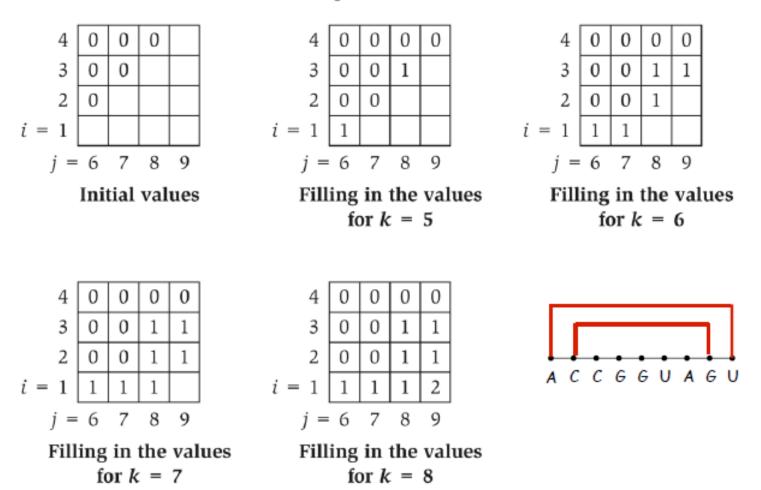


Figure 6.16 The iterations of the algorithm on a sample instance of the RNA Secondary Structure Prediction Problem.

Trovare una soluzione

RNA sequence ACCGGUAGU

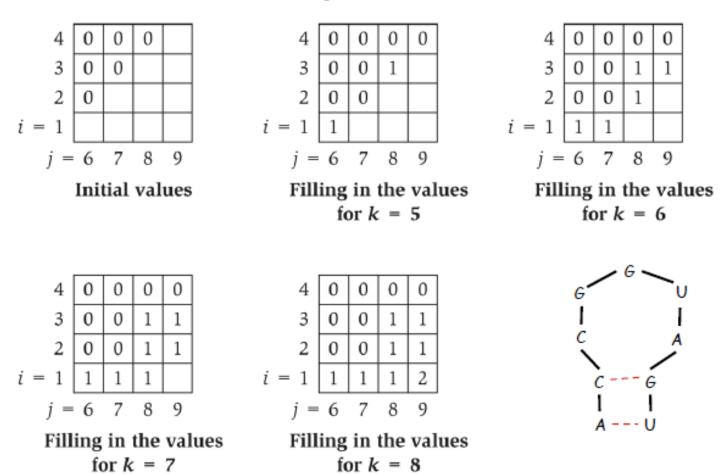


Figure 6.16 The iterations of the algorithm on a sample instance of the RNA Secondary Structure Prediction Problem.

Dynamic Programming Summary

Recipe.

Characterize structure of problem.

Recursively define value of optimal solution.

Compute value of optimal solution.

Construct optimal solution from computed information.

Dynamic programming techniques.

Binary choice: weighted interval scheduling.

Multi-way choice: segmented least squares.

Adding a new variable: knapsack.

Dynamic programming over intervals: RNA secondary structure.

Top-down vs. bottom-up: different people have different intuitions.

Calcolo di Combinazioni

Sia $\binom{n}{r}$ il numero di modi con cui possiamo scegliere r oggetti da un insieme di n elementi. Come possiamo calcolare $\binom{n}{r}$?

n elementi, possiamo o

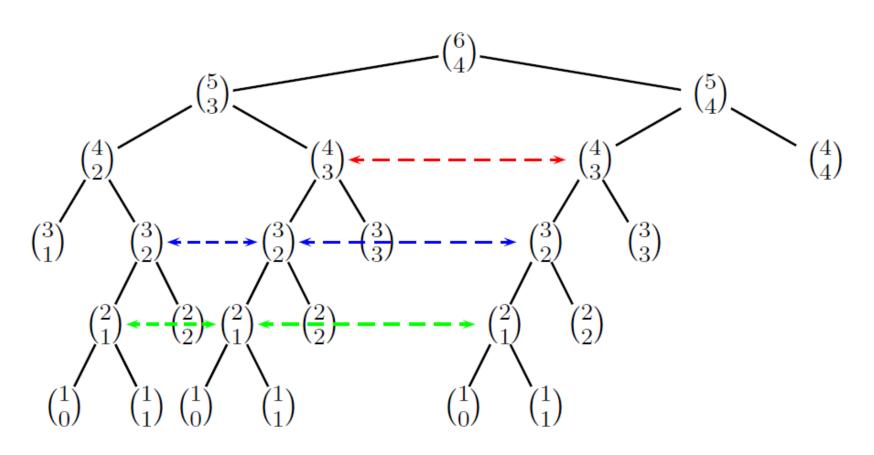
- ullet scegliere di prendere il primo oggetto dall'insieme (in questo caso ci resterá il problema di scegliere i restanti r-1 oggetti da un insieme di n-1 elementi, e questo si potrá fare in $\binom{n-1}{r-1}$ modi), oppure
- scegliere di non prendere il primo oggetto dall'insieme (in questo secondo caso ci resterá il problema di scegliere tutti gli r oggetti da un insieme di n-1 elementi, e questo si potrá fare in $\binom{n-1}{r}$ modi).

Ció equivale a dire che

$$\binom{n}{r} = \binom{n-1}{r-1} + \binom{n-1}{r}$$

Algoritmo ricorsivo CHOOSE

Albero delle chiamate ricorsive di CHOOSE(6,4))



Algoritmo di programmazione dinamica

$$\begin{split} & \operatorname{ITERCHOOSE}(n,r) \\ & \operatorname{for} i \leftarrow 0 \ \operatorname{to} \ n-r \ \operatorname{do} \ T[i,0] \leftarrow 1 \\ & \operatorname{for} i \leftarrow 0 \ \operatorname{to} \ r \ \operatorname{do} \ T[i,i] \leftarrow 1 \\ & \operatorname{for} j \leftarrow 1 \ \operatorname{to} \ r \ \operatorname{do} \\ & \operatorname{for} i \leftarrow j+1 \ \operatorname{to} \ n-r+j \ \operatorname{do} \\ & T[i,j] \leftarrow T[i-1,j-1] + T[i-1,j] \\ & \operatorname{return} \ (T[n,r]) \end{split}$$

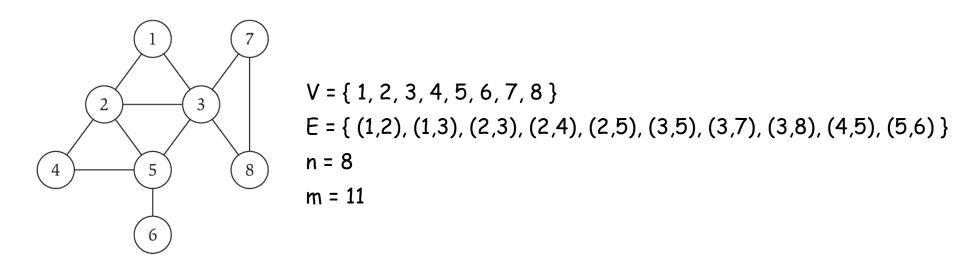
Al momento dell' assegnazione $T[i,j] \leftarrow T[i-1,j-1] + T[i-1,j]$ occorre che T[i-1,j-1] e + T[i-1,j] siano stati giá calcolati (e infatti l'algoritmo correttamente procede in questo modo)

Grafi: definizioni e visite

Grafi (non orientati)

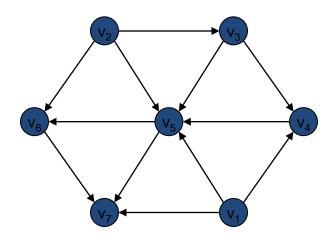
Grafo (non orientato): G = (V, E)

- V = nodi (o vertici)
- E = archi fra coppie di nodi distinti.
- Modella relazioni fra coppie di oggetti.
- Parametri della taglia di un grafo: n = |V|, m = |E|.



Grafi diretti (o orientati)

- Grafo diretto: G = (V, E)
- V = nodi (o vertici)
- E = archi diretti da un nodo (coda) in un altro (testa)
- · Modella relazioni non simmetriche fra coppie di oggetti.
- Parametri della taglia di un grafo: n = |V|, m = |E|.



Grafi

Il grafo è una delle strutture più espressive e fondamentali della matematica discreta.

Semplice modo di modellare relazioni a coppie in un insieme di oggetti.

Innumerevoli applicazioni.

"Più si lavora coi grafi, più si tende a vederli ovunque".

Qualche applicazione

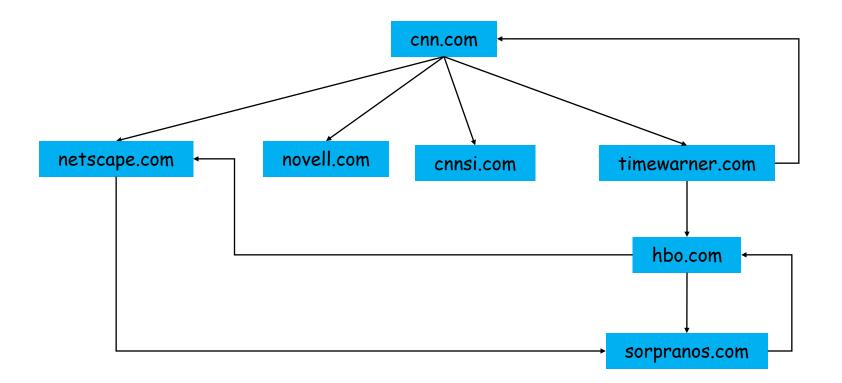
Grafo	Nodi	Archi	
trasporti	Incroci di strade /città	Strade	
	aeroporti	Rotte aeree	
comunicazioni	computers	cavi in fibre ottiche	
World Wide Web	pagine web	hyperlinks	
social network	persone	relazioni	
food web	specie	predatore-preda	
software systems	funzioni	chiamate di funzioni	
scheduling	tasks	vincoli di precedenza	
circuiti	porte	fili	

World Wide Web

Grafo del Web (orientato).

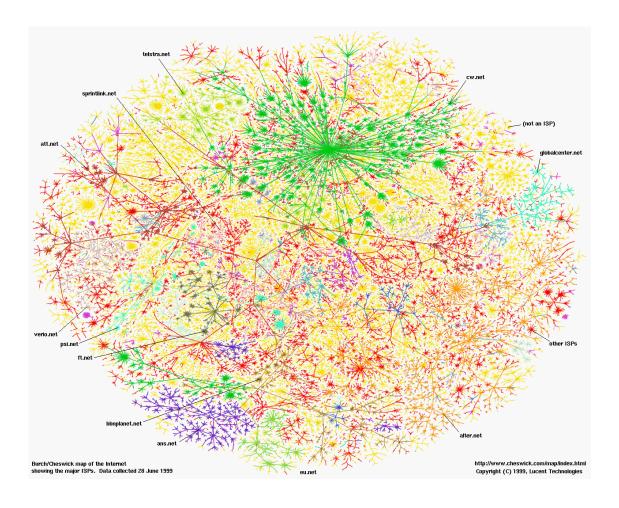
Nodo: pagina web

Arco: hyperlink da una pagina all'altra.



World Wide Web

Albero con circa 100.000 nodi



Rete terroristi dell'11 settembre

Grafo di una social network.

• Nodo: persona.

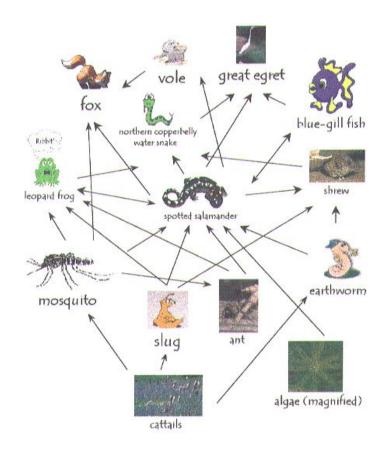
• Arco: relazione fra 2 persone

Reference: Valdis Krebs, http://www.firstmonday.org/issues/issue7_4/krebs

Ecological Food Web

Food web (grafo orientato).

- nodo = specie.
- arco = dalla preda al predatore



Lezioni su grafi

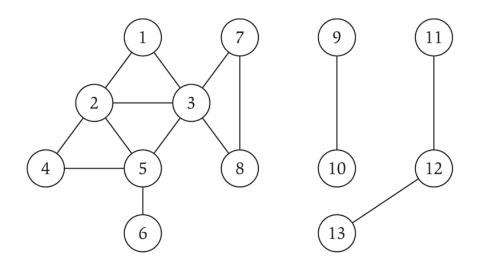
- Definizioni. Problemi di connettività e sulle componenti connesse.
 Visite BFS e DFS.
- Problemi su componenti connesse in grafi orientati. Test per grafi bipartiti. Ordine topologico in DAG.
- Calcolo di cammini minimi: algoritmo di Dijkstra (greedy) (par. 4.4). Calcolo di cammini minimi con costi anche negativi: algoritmo di Bellman-Ford (programmazione dinamica) (par. 6.8)
- Albero di ricoprimento minimo: algoritmi di Prim e di Kruskal (greedy) (par. 4.5). Applicazione di MST: clustering (par. 4.7) (4 lezioni)
- Flusso (parr. 7.1, 7.2, 7.3) e applicazione a matching su grafi bipartiti (par. 7.5)
 (2 lezioni)

Un pò di terminologia

Def. In un grafo G = (V, E) se l'arco $(u,v) \in E$ allora diremo che:

- l'arco è incidente u e v
- u e v sono adiacenti
- (u,v) è un arco uscente da u.

Def. Il grado ("degree") di un nodo u, indicato deg(u), è il numero di archi uscenti da u.



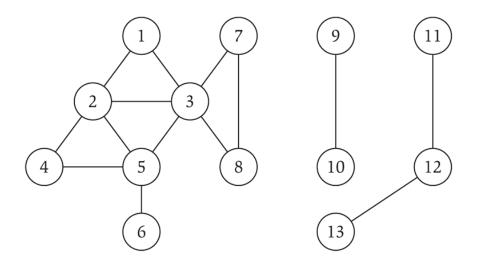
Cammini

Def. Un cammino in un grafo G = (V, E) è una sequenza P di nodi v_1 , v_2 , ..., v_{k-1} , v_k con la proprietà che ogni coppia consecutiva v_i , v_{i+1} è collegata da un arco in E.

La sua lunghezza è k-1

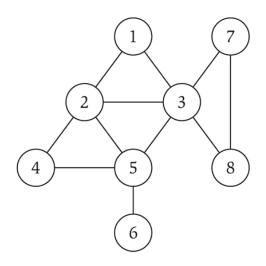
Def. Un cammino è semplice se tutti nodi sono distinti.

Def. Un grafo è connesso se per ogni coppia di nodi u e v, c'è un cammino fra u e v.



Cicli

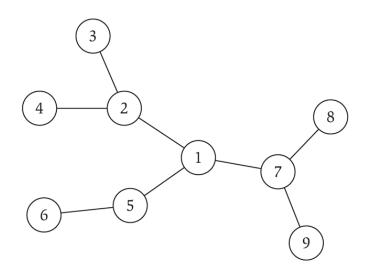
Def. Un ciclo è un cammino v_1 , v_2 , ..., v_{k-1} , v_k nel quale $v_1 = v_k$, k > 2, e i primi k-1 nodi sono tutti distinti.



ciclo *C* = 1-2-4-5-3-1

Alberi

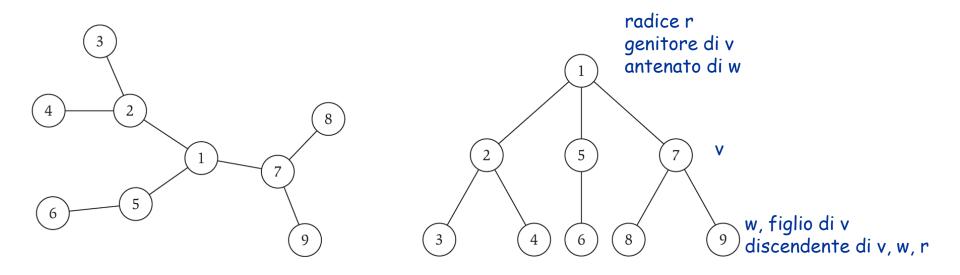
Def. Un grafo è un albero se è connesso e non contiene un ciclo.



Alberi radicati

Albero radicato. Dato un albero T, scegliere un nodo radice r e orientare ogni arco rispetto ad r.

Importanza: Modella una struttura gerarchica

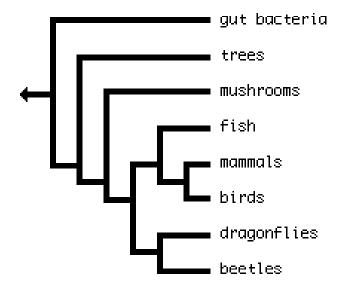


un albero

lo stesso albero, radicato in 1

Alberi filogenetici

Alberi filogenetici: Descrivono la storia evolutiva delle specie.



Proprietà degli alberi

Lemma. Ogni albero con n nodi ha n-1 archi

(conta gli archi da ogni nodo non radice al padre)

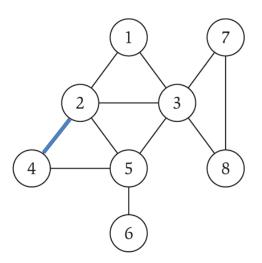
Teorema. Sia G un grafo con n nodi. Due qualsiasi delle seguenti affermazioni implicano la terza:

- G è connesso.
- G non contiene un ciclo.
- G ha n-1 archi.

Rappresentazione di un grafo: Matrice di adiacenza

Matrice di adiacenza: matrice $n \times n$ con $A_{uv} = 1$ se (u, v) è un arco.

- Due rappresentazioni di ogni arco.
- Spazio proporzionale ad n².
- Verificare se (u, v) è un arco richiede tempo $\Theta(1)$.
- Elencare tutti gli archi richiede tempo $\Theta(n^2)$.
- Elencare tutti gli archi incidenti su un fissato nodo richiede tempo $\Theta(n)$.

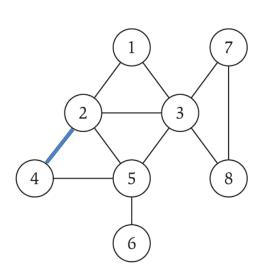


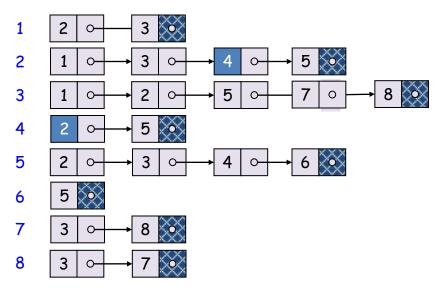
	1	2	3	4	5	6	7	8
1	0	1	1	0	0	0	0	0
2	1	0	1	1	1	0	0	0
3	1	1	0	0	1	0	1	1
4	0	1	0	0	1	0	0	0
5		1			0		0	0
6	0	0	0	0	1	0	0	0
7	0	0	1	0	0	0	0	1
8	0	0	1	0	0	0	1	0

Rappresentazione di un grafo: Lista di adiacenza

Lista di adiacenza: array di n liste indicizzate dai nodi.

- Due rappresentazioni di ogni arco.
- Spazio proporzionale ad m + n. (ogni arco compare 2 volte)
- Verificare se (u, v) è un arco richiede tempo O(deg(u)).
- Elencare tutti gli archi richiede tempo $\Theta(m + n)$.
- Elencare tutti gli archi incidenti su un fissato nodo u richiede tempo ⊕(deg(u)).





Somma lunghezze liste = 2m = 22

Confronto fra le rappresentazioni

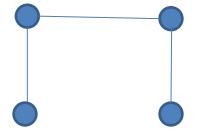
E' maggiore n² o m+n?

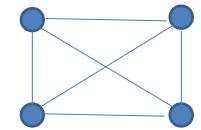
In un grafo connesso con n vertici: quanti archi posso avere, al minimo e al massimo?

$$n-1 \le m \le n(n-1)/2$$

$$|E| = \Omega(n)$$

$$|E| = O(n^2)$$





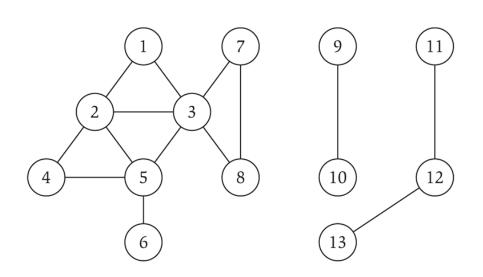
Problemi di connettività in grafi non orientati

- Problema della connettività s-t:
 Dati due nodi s e t, esiste un cammino fra s e t?
- Problema del cammino minimo s-t:
 Dati due nodi s e t, qual è la lunghezza del cammino minimo fra s e t?

Diremo: t raggiungibile da s se esiste un cammino fra s e t; distanza di s da t = lunghezza del cammino minimo fra s e t

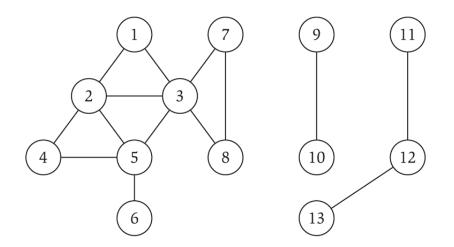
Vedremo:

Breadth First Search (BFS)
Depth First Search (DFS)



Componenti connesse

Def. La componente connessa di un grafo che contiene un nodo s è l'insieme dei nodi raggiungibili da s.



Problemi risolvibili con BFS o DFS

- Problema della connettività s-t:
 Dati due nodi s e t, esiste un cammino fra s e t?
- Problema del cammino minimo s-t:
 Dati due nodi s e t, qual è la lunghezza del cammino minimo fra s e t?

- Problema della componente connessa di s: trovare tutti i nodi raggiungibili da s
- Problema di tutte le componenti connesse di un grafo G: trovare tutte le componenti connesse di G

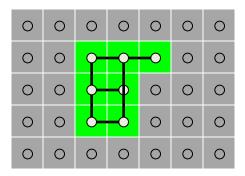
Applicazione componenti connesse: Riempimento aree

Riempimento aree. Per un fissato pixel verde in un'immagine, cambia colore a tutti i pixel adiacenti

- nodo: pixel.
- arco: fra due pixel adiacenti (nella stessa area)
- L'area da cambiare è una componente connessa



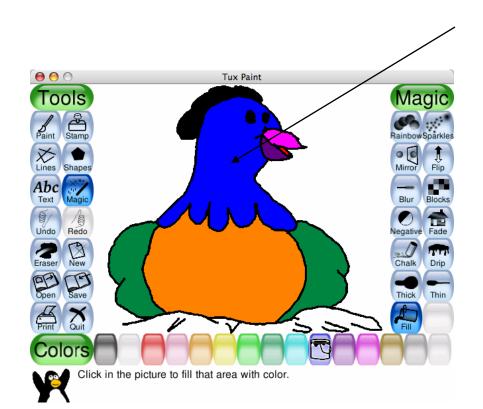
Ricolora da verde a blu



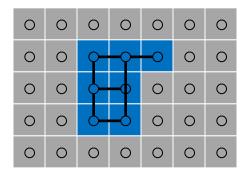
Applicazione componenti connesse: Riempimento aree

Riempimento aree. Per un fissato pixel verde in un'immagine, cambia colore a tutti i pixel adiacenti

- nodo: pixel.
- arco: fra due pixel adiacenti (nella stessa area)
- L'area da cambiare è una componente connessa



Ricolora da verde a blu

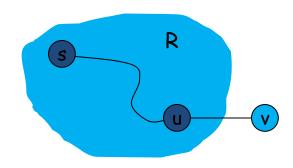


Componente connessa

Problema: Trova tutti i nodi raggiungibili da s.

Algoritmo generico:

```
R will consist of nodes to which s has a path Initially R=\{s\} While there is an edge (u,v) where u\in R and v\not\in R Add v to R Endwhile
```



È possibile aggiungere v

Teorema. Terminato l'algoritmo, R è la componente connessa che contiene s.

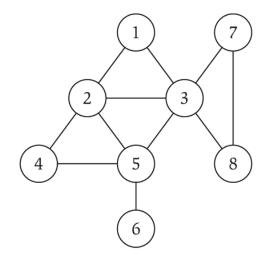
Prova: se $v \in R$, allora è raggiungibile da s;

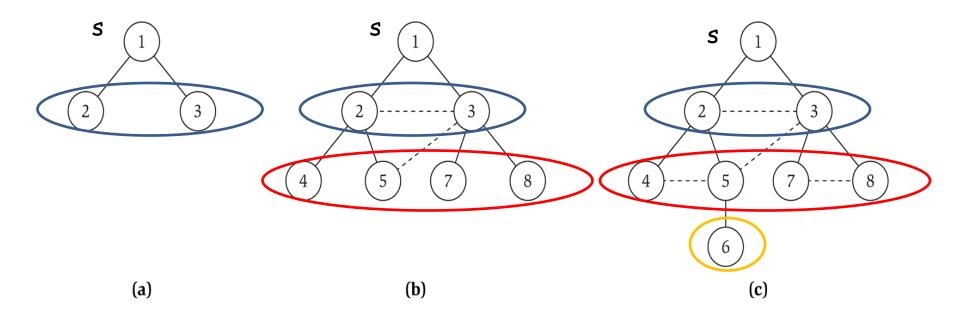
se v $\notin R$ e per assurdo esistesse un cammino s-v, allora esisterebbe (x,y) con $x \in R$, $y \notin R$ contro terminazione algoritmo.

Nota: BFS = esplora in ordine di distanza da s. DFS = esplora come in un "labirinto".

BFS: visita in ampiezza

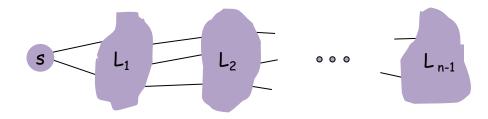
Idea della BFS: Esplorare a partire da s in tutte le possibili direzioni, aggiungendo nodi, uno strato ("layer") alla volta.





Breadth First Search

L_i sono i layers:



Algoritmo BFS:

- $L_0 = \{ s \}.$
- L_1 = tutti i vicini di L_0 .
- L_2 = tutti i nodi che non sono in L_0 o L_1 , e che hanno un arco con un nodo in L_1 .
- •
- L_{i+1} = tutti i nodi che non sono in un layer precedente, e che hanno un arco con un nodo in L_i .

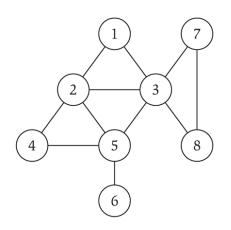
Teorema.

Per ogni i, L_i consiste di tutti i nodi a distanza i da s. Esiste un cammino da s a t se e solo se t appare in qualche layer.

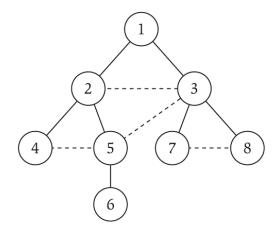
Prova: per induzione

Breadth First Search: proprietà

- Determina i nodi raggiungibili da s (insieme dei layer)
- Determina la loro distanza da s (indice del layer)
- Produce un albero radicato in s: l'albero BFS (aggiungo (u,v) quando u \in Li e $v \notin L_0 \cup ... \cup L_i$)



Grafo G



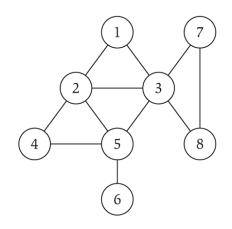
Gli archi non tratteggiati formano l'albero BFS di G

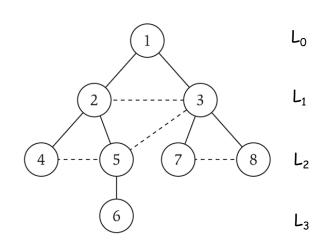
Proprietà dell'albero BFS

Proprietà: Sia T un albero BFS di un grafo G, sia (x, y) un arco di G con x appartenente ad L_i , y ad L_j .

Allora i e j differiscono di al più 1.

Prova: Supponi i \leq j. Quando BFS esamina gli archi incidenti x, o y viene scoperto ora (y in L_{i+1}), o è stato scoperto prima (contro i \leq j).





BFS implementazione

```
BFS(s):
  Set Discovered[s] = true and Discovered[v] = false for all other v
  Initialize L[0] to consist of the single element s
  Set the layer counter i=0
  Set the current BFS tree T = \emptyset
  While L[i] is not empty
    Initialize an empty list L[i+1]
    For each node u \in L[i]
      Consider each edge (u, v) incident to u
      If Discovered[v] = false then
        Set Discovered[v] = true
        Add edge (u, v) to the tree T
        Add v to the list L[i+1]
      Endif
    Endfor
    Increment the layer counter i by one
  Endwhile
```

BFS: analisi

Teorema: L'implementazione di BFS richiede tempo O(m+n) se il grafo è rappresentato con una lista delle adiacenze.

Prova:

E' facile provare un running time $O(n^2)$. Un'analisi più accurata da O(m+n).

BFS implementazione

```
BFS(s):
  Set Discovered[s] = true and Discovered[v] = false for all other v
  Initialize L[0] to consist of the single element s
  Set the layer counter i=0
  Set the current BFS tree T = \emptyset
  While L[i] is not empty
    Initialize an empty list L[i+1]
    For each node u \in L[i]
      Consider each edge (u, v) incident to u
      If Discovered[v] = false then
        Set Discovered[v] = true
        Add edge (u, v) to the tree T
        Add v to the list L[i+1]
      Endif
    Endfor
    Increment the layer counter i by one
  Endwhile
```

E' facile provare running time $O(n^2)$:

- Inizializzazione in O(n)
- al massimo n liste L[i] da creare in O(n)
- ogni nodo è presente in al più una lista: cicli for in totale iterano ≤ n volte
- Per un fissato nodo u, vi sono al più n archi incidenti (u,v) e spendiamo O(1) per ogni arco.

BFS implementazione

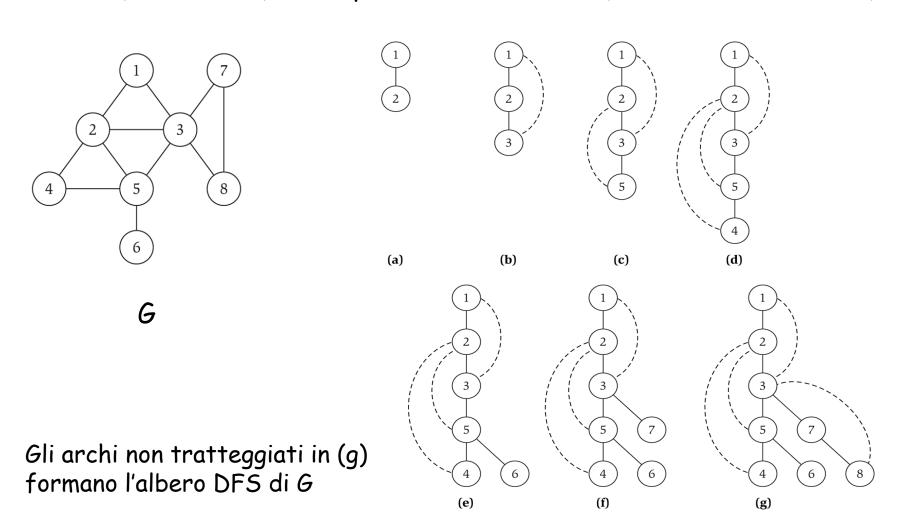
```
BFS(s):
  Set Discovered[s] = true and Discovered[v] = false for all other v
  Initialize L[0] to consist of the single element s
  Set the layer counter i=0
  Set the current BFS tree T = \emptyset
  While L[i] is not empty
    Initialize an empty list L[i+1]
    For each node u \in L[i]
      Consider each edge (u, v) incident to u
      If Discovered[v] = false then
        Set Discovered[v] = true
        Add edge (u, v) to the tree T
        Add v to the list L[i+1]
      Endif
    Endfor
    Increment the layer counter i by one
  Endwhile
```

Un'analisi più accurata: O(m+n):

- Inizializzazione in O(n)
- Al massimo n liste L[i] da creare in O(n)
- Ogni nodo è presente in al più una lista: per un fissato nodo u vi sono deg(u) archi incidenti (u,v)
- Tempo totale per processare gli archi è $\Sigma_{u \in V}$ deg(u) = 2m

DFS: visita in profondità

Idea di DFS: Esplorare quanto più in profondità possibile e tornare indietro ("backtrack)" solo quando è necessario (come in un labirinto...)



Algoritmo DFS

Idea di DFS: Esplorare quanto più in profondità possibile e tornare indietro ("backtrack)" solo quando è necessario (come in un labirinto...)

Algoritmo ricorsivo

```
DFS(u):
   Mark u as "Explored" and add u to R
   For each edge (u, v) incident to u
        If v is not marked "Explored" then
            Recursively invoke DFS(v)
        Endif
Endfor
```

Algoritmo DFS

Proprietà 1: Per una fissata chiamata ricorsiva DFS(u), tutti i nodi che sono marcati Explored tra l'inizio e la fine della chiamata ricorsiva sono discendenti di u in T.

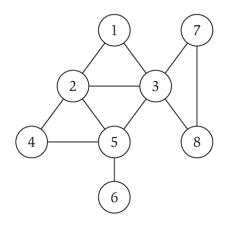
Proprietà 2: Sia T un DFS, siano x e y nodi in T si supponga (x,y) non in T. Allora x è antenato di y o viceversa.

Prova:

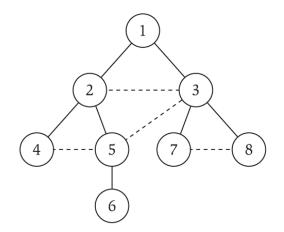
Esempio: x=1, y=3. DFS(1) chiama DFS(2) e DFS(3). Poiché (x,y) non in T, quando chiama DFS(3), 3 è già Explored quindi è stato marcato durante la chiamata DFS(1) + Proprietà 1.

Alberi BFS e DFS

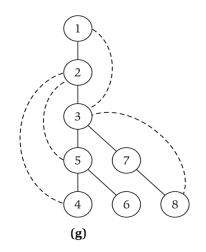
Grafo G



Albero BFS di G



Albero DFS di G



Applicazioni di BFS e DFS

- Problema della connettività s-t:
 Dati due nodi s e t, esiste un cammino fra s e t?
- Problema del cammino minimo s-t:
 Dati due nodi s e t, qual è la lunghezza del cammino minimo fra s e t?
- Problema della componente connessa di s: trovare tutti i nodi raggiungibili da s

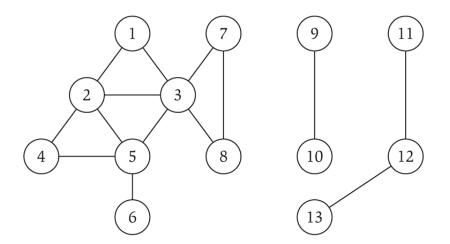
Resta:

 Problema di tutte le componenti connesse di un grafo G: trovare tutte le componenti connesse di G

Relazioni fra componenti connesse

Def. La componente connessa di un grafo che contiene un nodo s è l'insieme dei nodi raggiungibili da s.

Problema: Che relazione c'è fra due componenti connesse?



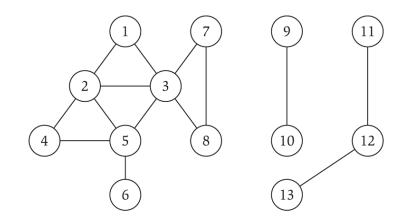
Proprietà: Siano x ed y due nodi in un grafo G. Allora le componenti connesse sono identiche oppure disgiunte

Tutte le componenti connesse

Proprietà: Siano x ed y due nodi in un grafo G. Allora le componenti connesse sono identiche oppure disgiunte

Prova . Due casi:

- Esiste un cammino tra x e y:
 (ogni nodo v raggiungibile da x
 è raggiungibile da y)
- Non esiste un cammino tra x e y (idem)



Algoritmo per trovare tutte le componenti connesse:

Partendo da s qualsiasi usa BFS (o DFS) per generare la componente connessa di s. Trova un nodo v non visitato. Se esiste, usa BFS da v per calcolare la componente connessa di v (che è disgiunta). Ripeti.

Tempo: O(m+n)

In realtà BFS(s) richiede tempo lineare nel numero di nodi e archi della componente connessa di s.

Altre applicazioni di BFS e DFS

- Problema della verifica se un grafo è bipartito (par. 3.4)
- Problema della connettività nei grafi diretti (par. 3.5)

... e altre ancora.

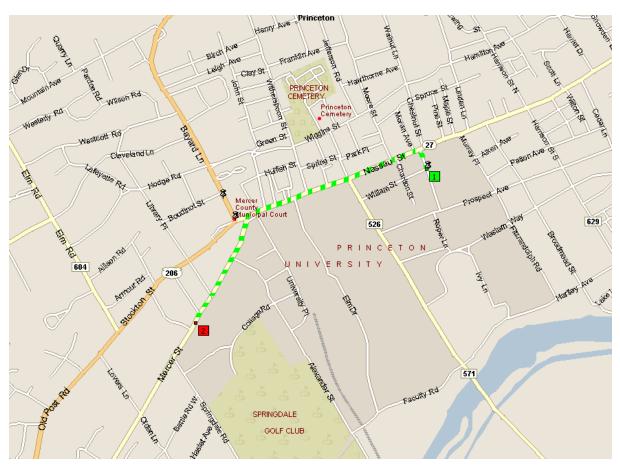
Shortest paths

4.4 Shortest Paths in a Graph (only with positive costs): Dijkstra Algorithm: Greedy

6.8 Shortest Paths in a Graph:

Bellman & Ford Algorithm: Dynamic Programming

Shortest Paths in a Graph



Shortest path from Princeton CS department to Einstein's house

Shortest Path Problem

Shortest path network.

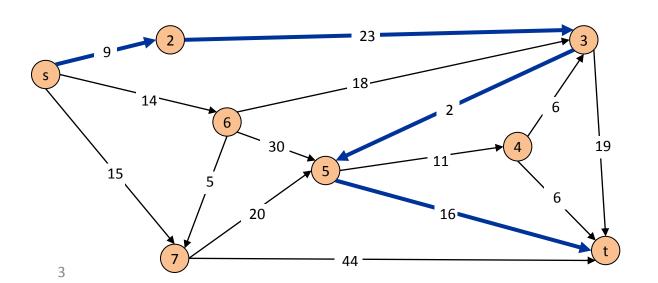
Directed graph G = (V, E).

Source s, destination t.

Length ℓ_e = length/cost/weight of edge e.

Shortest path problem: find shortest (min cost) directed path from s to t.

cost of path = sum of edge costs in path



Cost of path s-2-3-5-t = 9 + 23 + 2 + 16 = 48.

Dijkstra's Algorithm

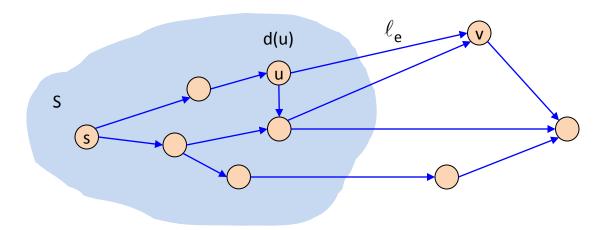
Dijkstra's algorithm (greedy approach).

- Maintain a set of explored nodes S for which we have determined the shortest path distance d(u) from s to u.
- Initialize S = { s }, d(s) = 0.
- Repeatedly choose unexplored node v which minimizes

$$\pi(v) = \min_{e = (u,v): u \in S} d(u) + \ell_e$$

• Add v to S, and set $d(v) = \pi(v)$.

shortest path to some u in explored part, followed by a single edge (u, v)



Dijkstra's Algorithm

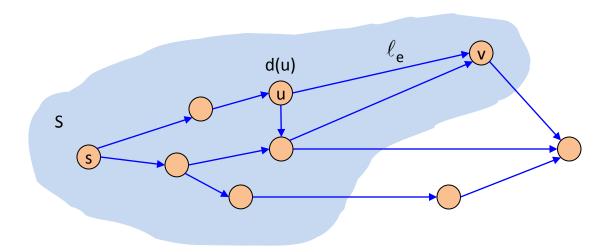
Dijkstra's algorithm.

- Maintain a set of explored nodes S for which we have determined the shortest path distance d(u) from s to u.
- Initialize S = { s }, d(s) = 0.
- Repeatedly choose unexplored node v which minimizes

$$\pi(v) = \min_{e = (u,v): u \in S} d(u) + \ell_e,$$

• Add v to S, and set $d(v) = \pi(v)$.

shortest path to some u in explored part, followed by a single edge (u, v)



Dijkstra's Algorithm: Proof of Correctness

Invariant. For each node $u \in S$, d(u) is the length of the shortest s-u path.

Pf. (by induction on |S|)

Base case: |S| = 1 is trivial.

Inductive hypothesis: Assume true for $|S| = k \ge 1$.

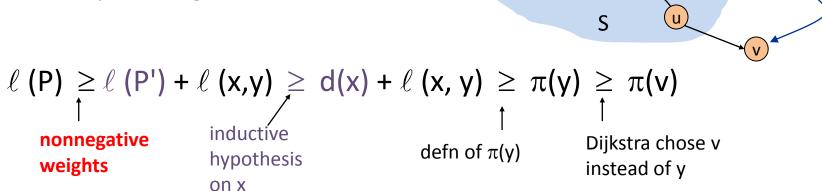
Let v be next node added to S, and let u-v be the chosen edge.

The shortest s-u path plus (u, v) is an s-v path of length $\pi(v)$.

Consider any s-v path P. We'll see that it's no shorter than $\pi(v)$.

Let x-y be the first edge in P that leaves S, and let P' be the subpath to x.

P is already too long as soon as it leaves S.



P

Dijkstra's Algorithm: Implementation

For each unexplored node, explicitly maintain

$$\pi(v) = \min_{e = (u,v): u \in S} d(u) + \ell_e.$$

Next node to explore = node with minimum $\pi(v)$.

When exploring v, for each incident edge e = (v, w), update

$$\pi(w) = \min \{ \pi(w), \pi(v) + \ell_e \}.$$

Efficient implementation. Maintain a priority queue of unexplored nodes, prioritized by $\pi(v)$.

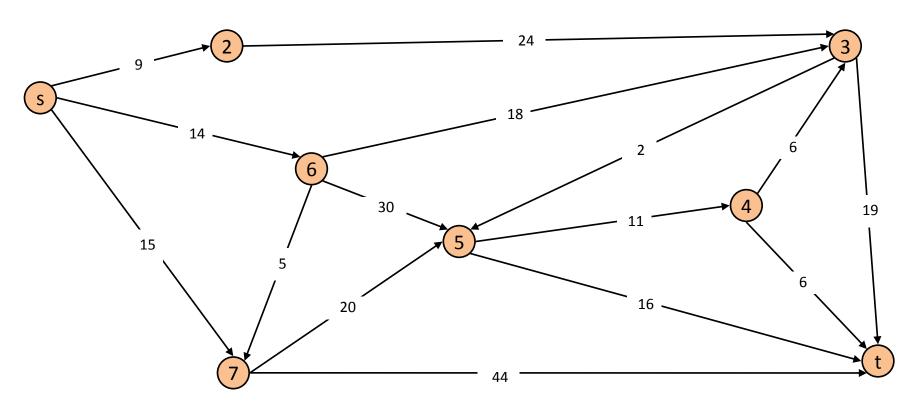
Priority Queue

PQ Operation	Dijkstra	Array	Binary heap		Fib heap [†]
Insert	n	1	log n	d log _d n	1
ExtractMin	n	n	log n	d log _d n	log n
ChangeKey	m	1	log n	log _d n	1
IsEmpty	n	1	1	1	1
Total		n²	m log n	m log _{m/n} n	m + n log n

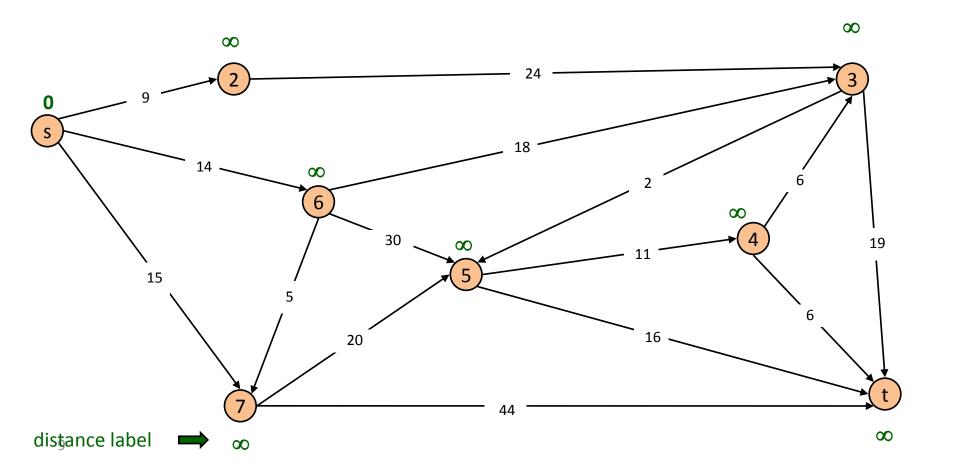
[†] Individual ops are amortized bounds

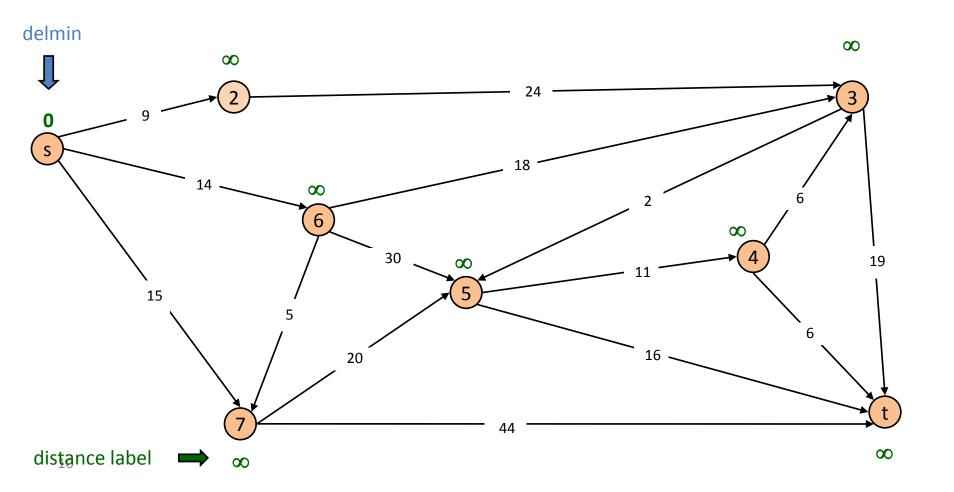
Dijkstra's Shortest Path Algorithm

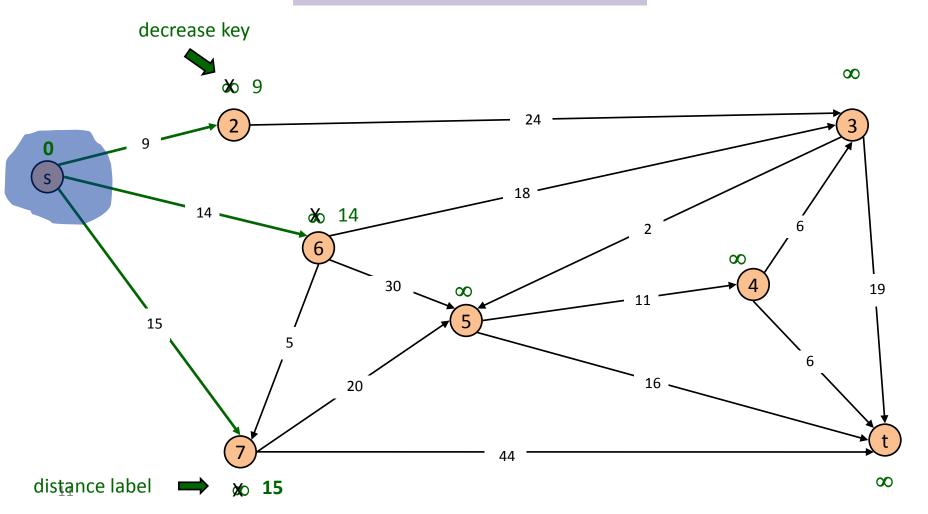
Find shortest path from s to t.

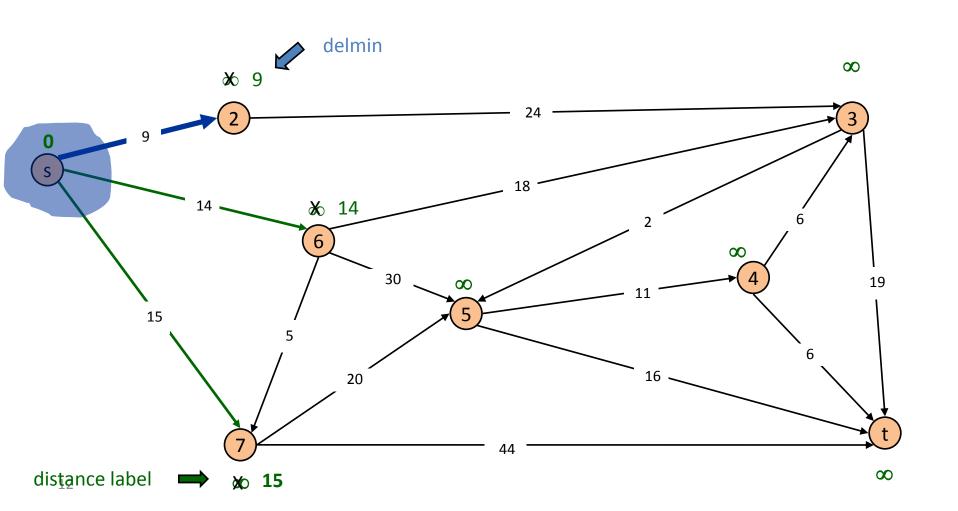


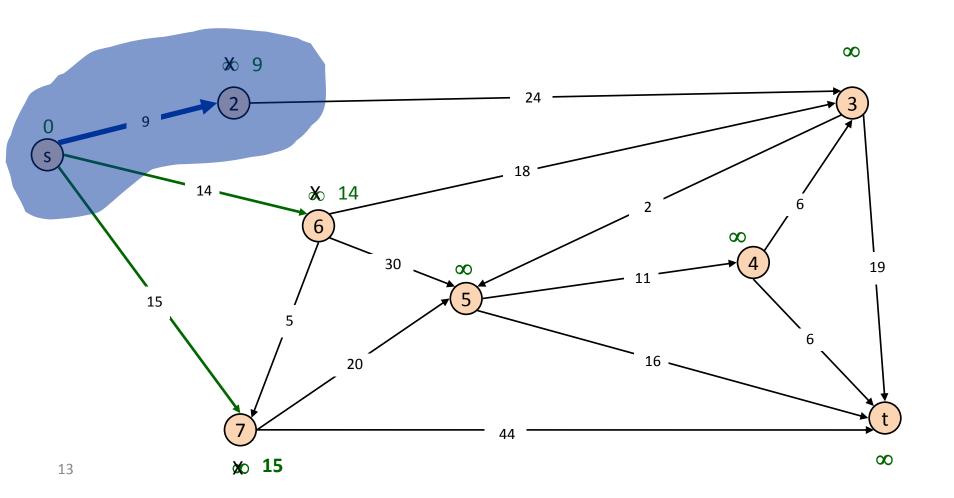
Dijkstra's Shortest Path Algorithm

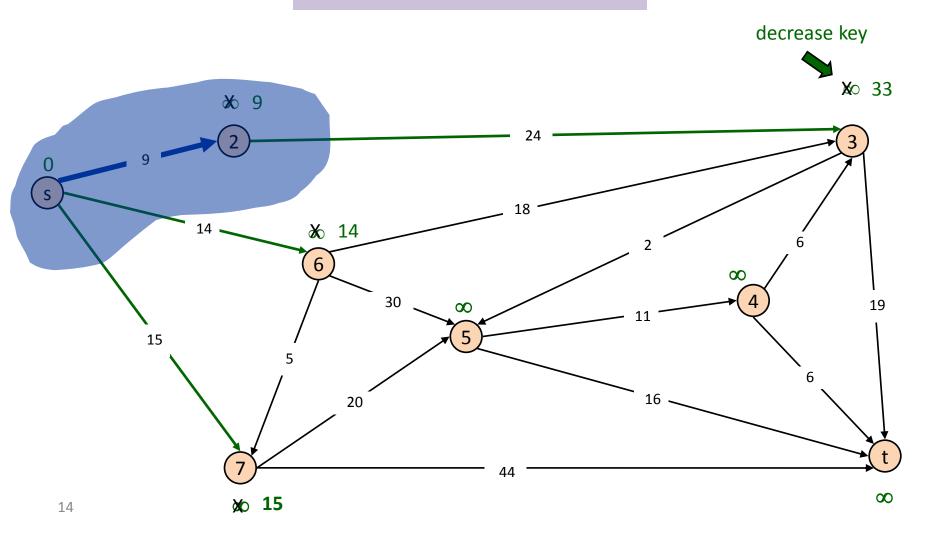


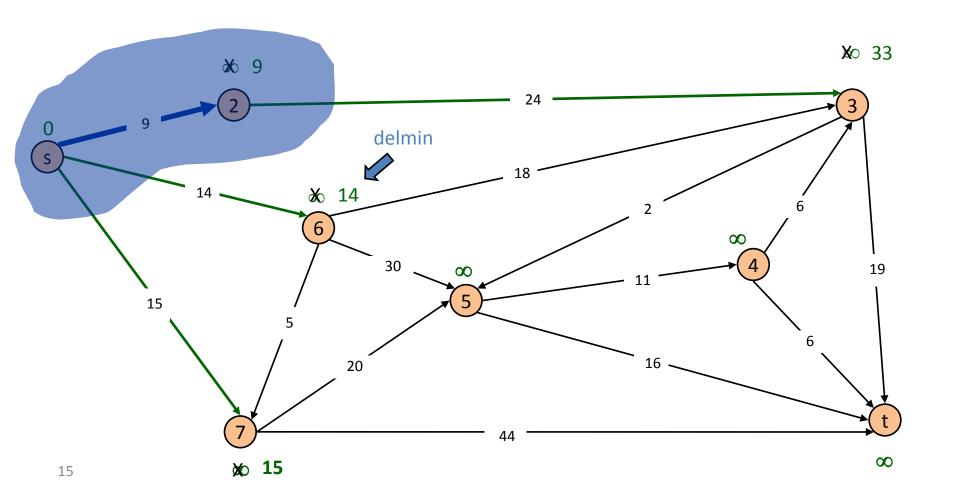


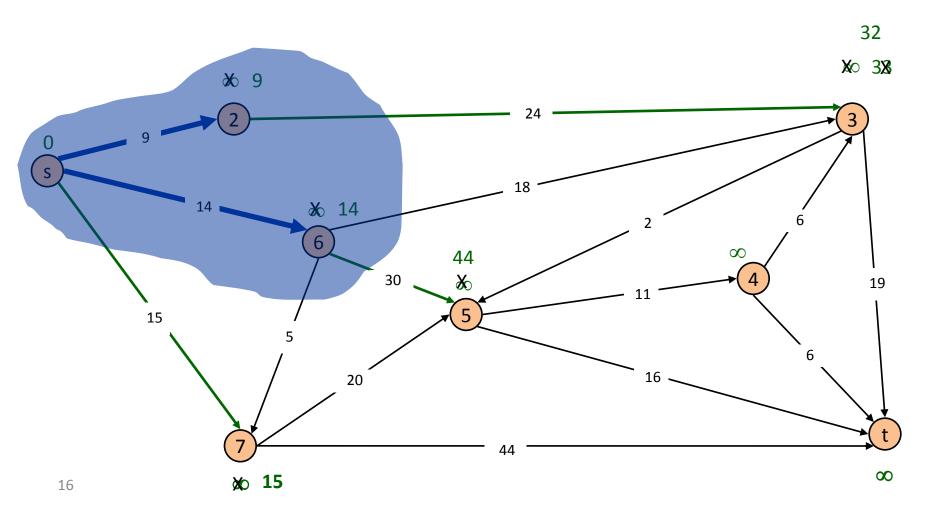


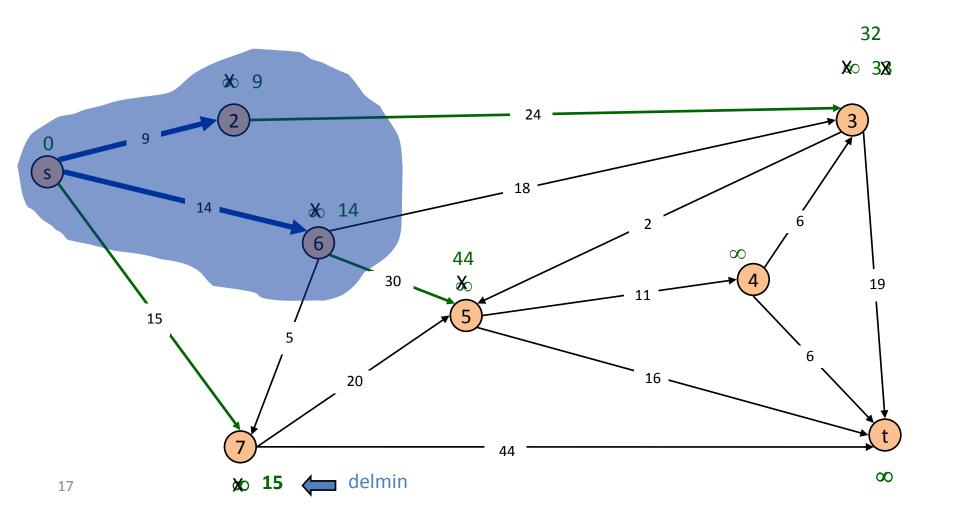


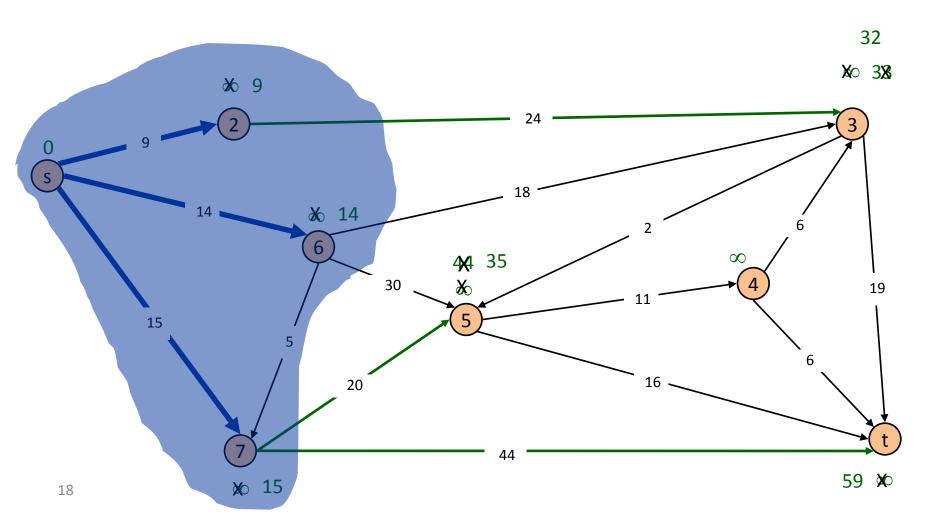


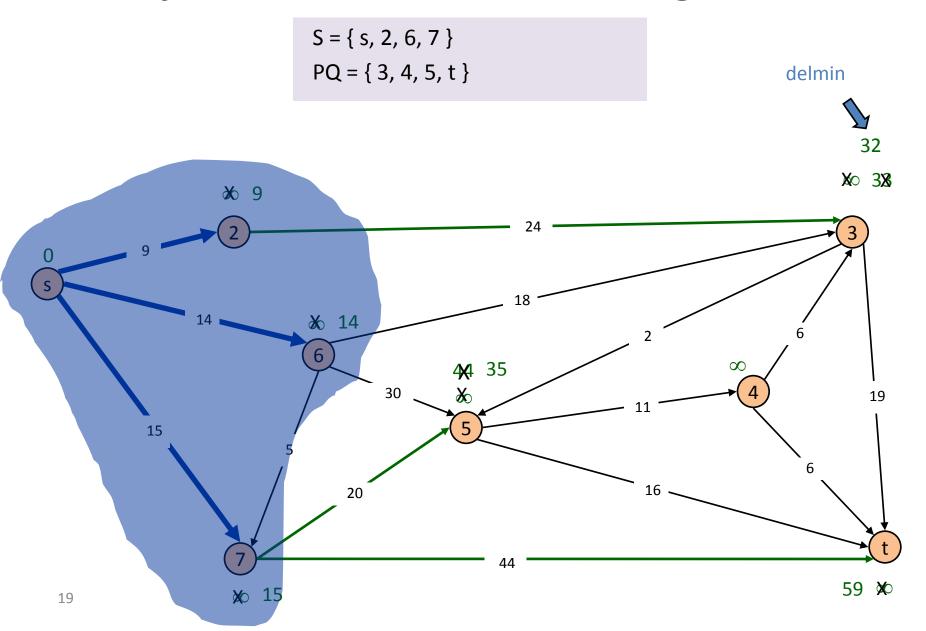






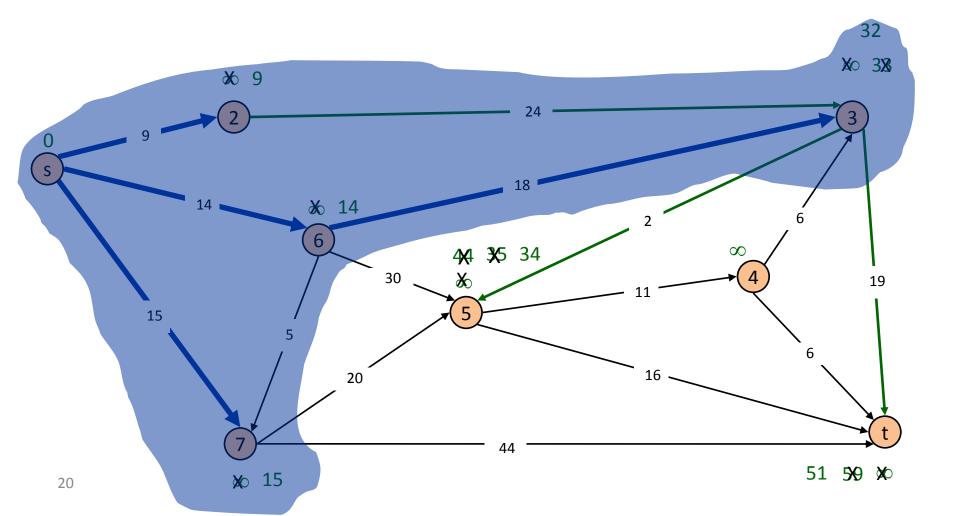


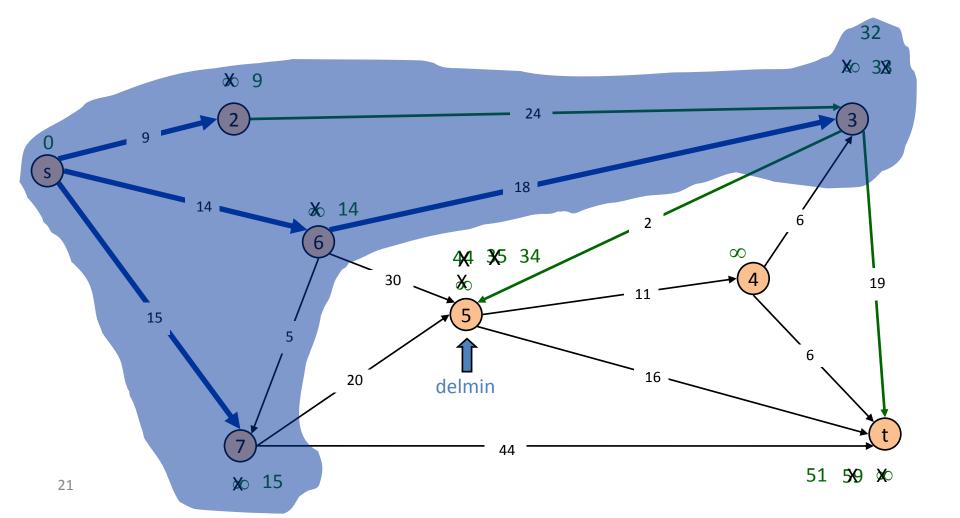


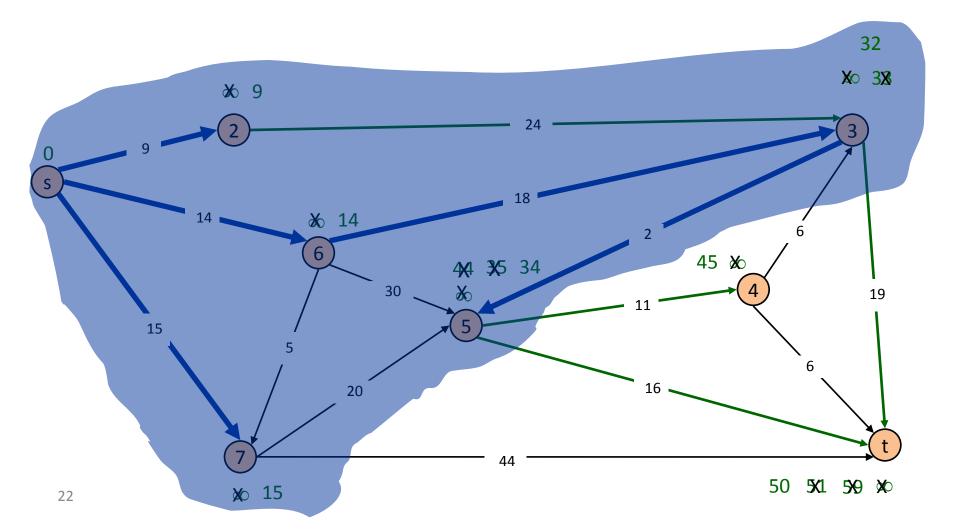


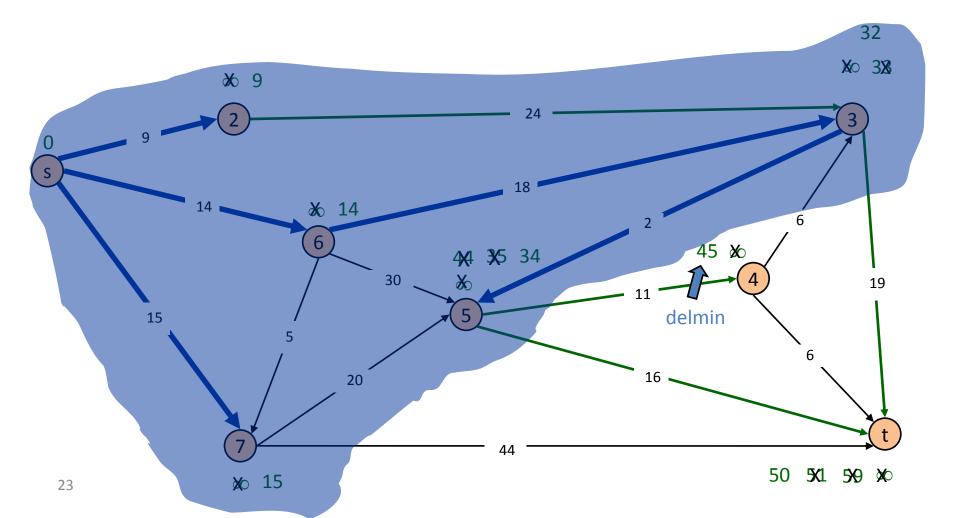
$$S = \{ s, 2, 3, 6, 7 \}$$

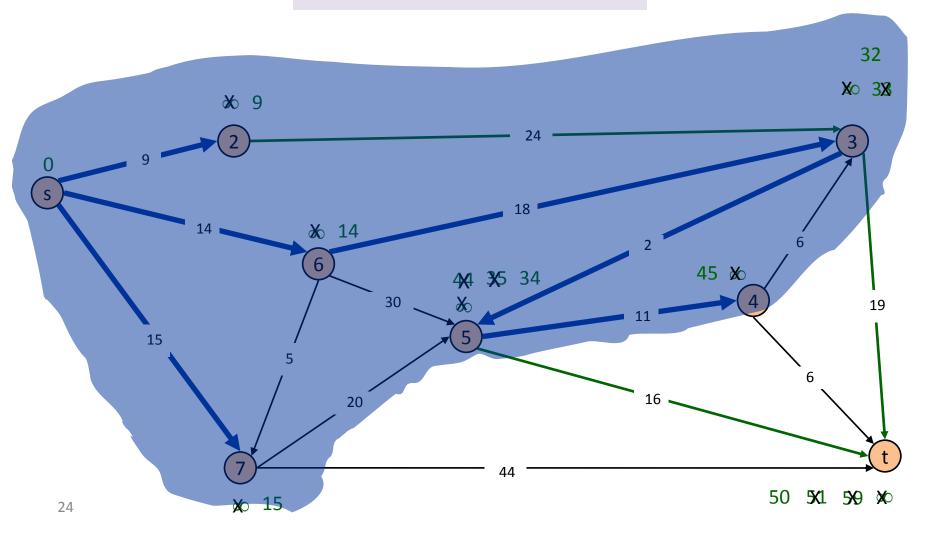
PQ = $\{ 4, 5, t \}$

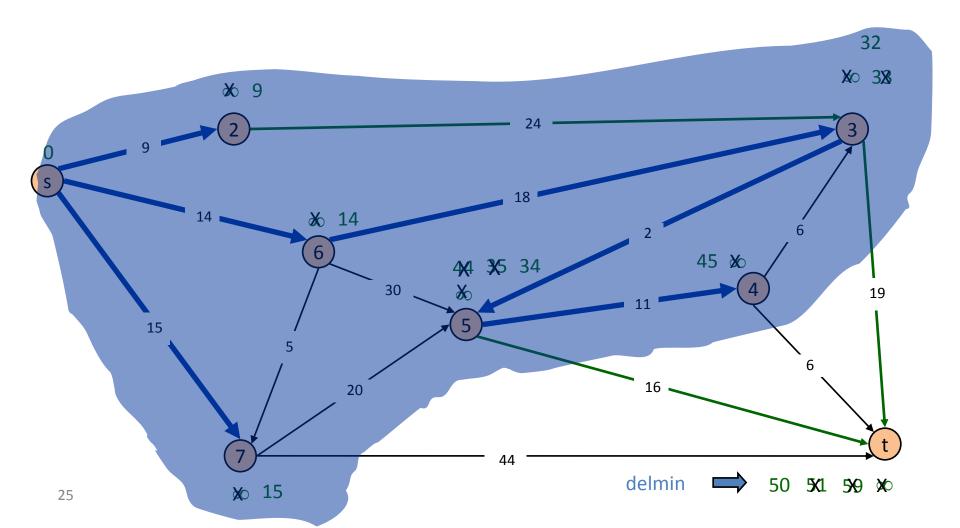


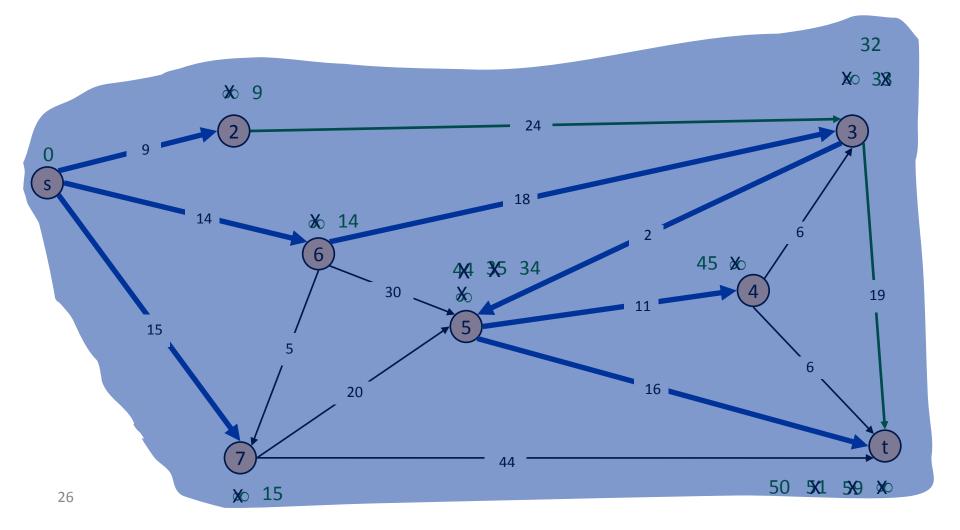


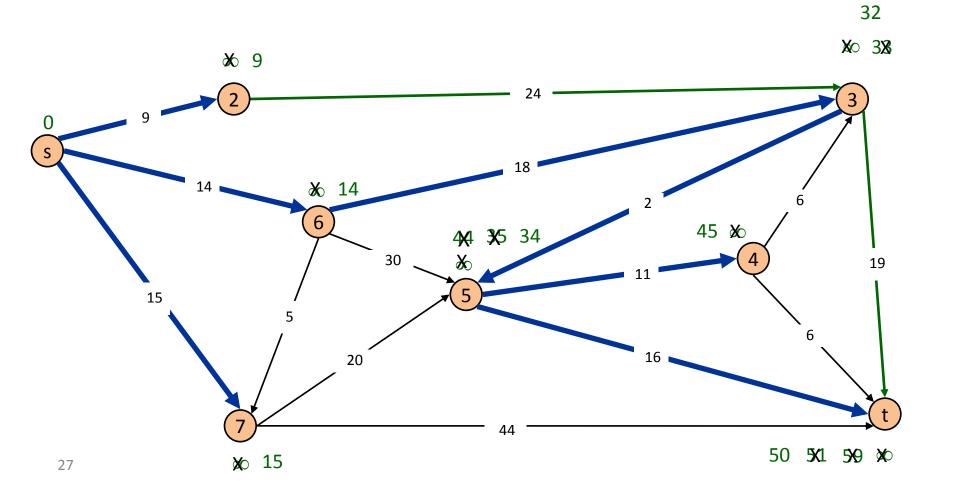












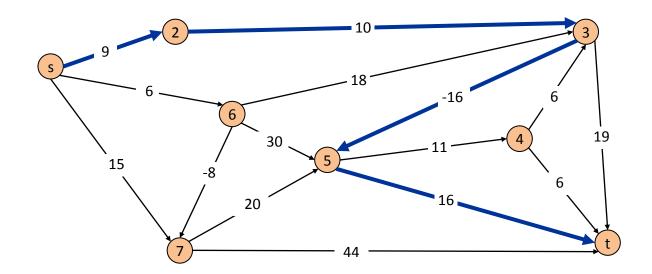
6.8 Shortest Paths: Bellman & Ford Algorithm Dynamic Programming

Shortest Paths

Shortest path problem. Given a directed graph G = (V, E), with edge costs c_{vw} find shortest (min cost) path from node s to node t.

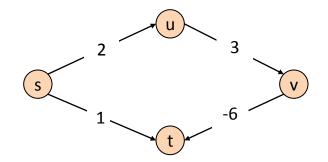
allow negative costs

Application. Nodes represent agents in a financial setting and c_{vw} is cost of transaction in which we buy from agent v and sell immediately to w.

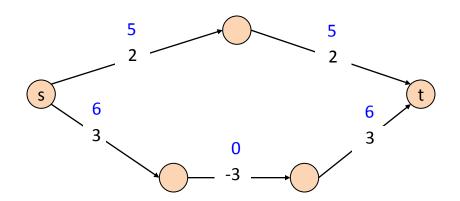


Shortest Paths: Failed Attempts

Dijkstra. Can fail if negative edge costs /weights.

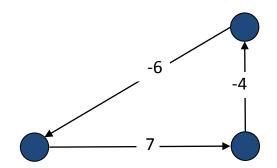


Re-weighting. Adding a constant to every edge cost can fail.



Shortest Paths: Negative Cost Cycles

Negative cost cycle.



Observation. If some path from s to t contains a negative cost cycle, there does not exist a shortest s-t path.

If no negative cost cycle, there exists a shortest s-t path that is simple.

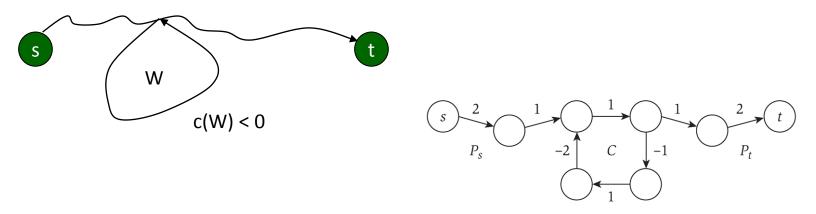


Figure 6.20 In this graph, one can find s-t paths of arbitrarily negative cost (by going around the cycle C many times).

Shortest Paths: Dynamic Programming

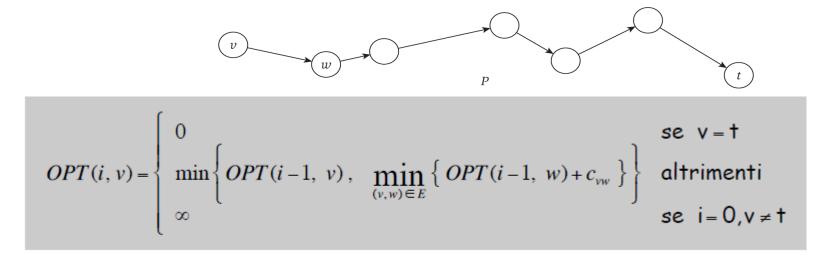
Def. OPT(i, v) = cost of shortest v-t path P using at most i edges.

Case 1: P uses at most i-1 edges.

$$OPT(i, v) = OPT(i-1, v)$$

Case 2: P uses exactly i edges.

if (v, w) is first edge, then OPT uses (v, w), and then selects best w-t path using at most i-1 edges



Remark. By previous observation, if no negative cycles, then OPT(n-1, v) = cost of shortest v-t path.

Shortest Paths: Implementation

```
Shortest-Path(G, t) {
    foreach node v ∈ V
        M[0, v] ← ∞
    M[0, t] ← 0

for i = 1 to n-1
    foreach node v ∈ V
        M[i, v] ← M[i-1, v]
    foreach edge (v, w) ∈ E
        M[i, v] ← min { M[i, v], M[i-1, w] + c<sub>vw</sub> }
}
```

Analysis. $\Theta(n^2)$ space, $\Theta(mn)$ time (la somma del numero di archi uscenti da v, per ogni v, è m)

Finding the shortest paths. Maintain a "successor" for each table entry.

Shortest Paths: Practical Improvements (FACOLTATIVO)

Practical improvements.

Maintain only one array M[v] = shortest v-t path that we have found so far.

No need to check edges of the form (v, w) unless M[w] changed in previous iteration.

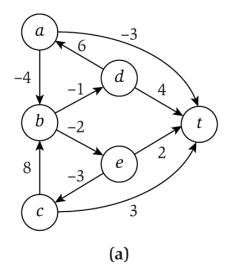
Theorem. Throughout the algorithm, M[v] is length of some v-t path, and after i rounds of updates, the value M[v] is no larger than the length of shortest v-t path using \leq i edges.

Overall impact.

Memory: O(m + n).

Running time: O(mn) worst case, but substantially faster in practice.

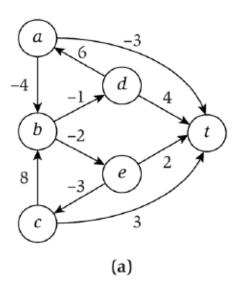
Esempio

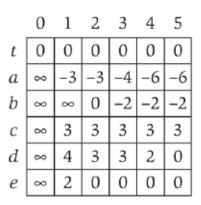


	0	1	2	3	4	5
t	0	0	0	0	0	0
а	8	-3	-3	-4	-6	-6
b	8	8	0	-2	-2	-2
С	8	3	3	3	3	3
d	8	4	3	3	2	0
е	8	2	0	0	0	0

(b)

Figure 6.23 For the directed graph in (a), the Shortest-Path Algorithm constructs the dynamic programming table in (b).





(b)

Figure 6.23 For the directed graph in (a), the Shortest-Path Algorithm constructs the dynamic programming table in (b).

Shortest Paths: Esempio

$$OPT(i, v) = \begin{cases} 0 & \text{se } v = t \\ \min \left\{ OPT(i-1, v), & \min_{(v, w) \in E} \left\{ OPT(i-1, w) + c_{vw} \right\} \right\} & \text{altrimenti} \\ \infty & \text{se } i = 0, v \neq t \end{cases}$$

$$OPT(5,a) = min(OPT(4,a), min(OPT(4,t)+c_{at},OPT(4,b)+c_{ab})$$

= min(-6, min(0-3,-2-4))

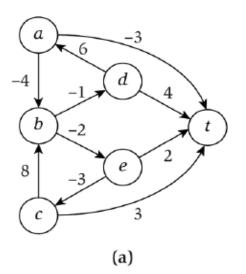
$$OPT(4,a) = min(OPT(3,a), min(OPT(3,t)+c_{at},OPT(3,b)+c_{ab})$$

= min(-4, min(0-3,-2-4))

$$OPT(3,b) = min(OPT(2,b), min(OPT(2,e)+c_{be},OPT(2,d)+c_{bd})$$
 b-e = min(0, min(0-2,3-1))

$$OPT(2,e) = min(OPT(1,e), min(OPT(1,c)+c_{ec},OPT(1,t)+c_{et})$$
 = min(2, min(3-3,0+2))

$$OPT(1,c) = min(OPT(0,c), min(OPT(0,b)+c_{cb}, OPT(0,t)+c_{ct})$$
 = min(∞ , min(∞ +8,0+3))



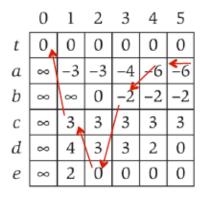


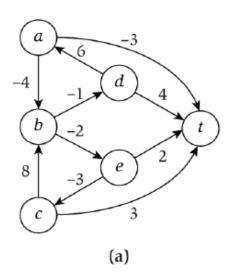
Figure 6.23 For the directed graph in (a), the Shortest-Path Algorithm constructs the dynamic programming table in (b).

(b)

Shortest Paths: Esempio

Trovare il cammino più corto. Qual'è l'informazione che possiamo ricordare?

$$\begin{aligned} & \mathsf{OPT}(5,a) = \min(\ \mathsf{OPT}(4,a), \, \min(\mathsf{OPT}(4,t) + c_{at}, \mathsf{OPT}(4,b) + c_{ab}) \\ & = \min(\ -6, \, \min(\mathsf{O} - 3, -2 - 4)) \end{aligned} \\ & \mathsf{OPT}(4,a) = \min(\ \mathsf{OPT}(3,a), \, \min(\mathsf{OPT}(3,t) + c_{at}, \mathsf{OPT}(3,b) + c_{ab}) \\ & = \min(\ -4, \, \min(\mathsf{O} - 3, -2 - 4)) \end{aligned} \\ & \mathsf{OPT}(3,b) = \min(\ \mathsf{OPT}(2,b), \, \min(\mathsf{OPT}(2,e) + c_{be}, \mathsf{OPT}(2,d) + c_{bd}) \\ & = \min(\ \mathsf{O}, \, \min(\mathsf{O} - 2, 3 - 1)) \end{aligned} \\ & \mathsf{OPT}(2,e) = \min(\ \mathsf{OPT}(1,e), \, \min(\mathsf{OPT}(1,c) + c_{ec}, \mathsf{OPT}(1,t) + c_{et}) \\ & = \min(\ \mathsf{2}, \, \min(\mathsf{3} - 3, \mathsf{0} + 2)) \end{aligned} \\ & \mathsf{OPT}(1,c) = \min(\mathsf{OPT}(\mathsf{0},c), \, \min(\mathsf{OPT}(\mathsf{0},b) + c_{cb}, \, \mathsf{OPT}(\mathsf{0},t) + c_{ct}) \end{aligned} \\ & \mathsf{C-t} \\ & = \min(\ \infty, \, \min(\mathsf{\infty} + 8, \mathsf{0} + 3)) \end{aligned}$$



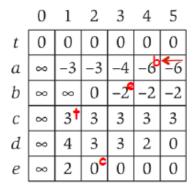


Figure 6.23 For the directed graph in (a), the Shortest-Path Algorithm constructs the dynamic programming table in (b).

(b)

Shortest Paths: Esempio

Trovare il cammino più corto. Qual'è l'informazione che possiamo ricordare?

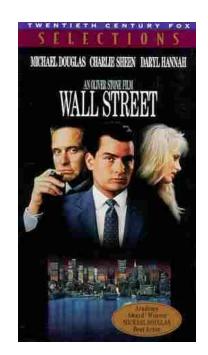
Mantenere un "successore" per ogni valore della tabella.

= min(∞ , min(∞ +8.0+3))

Coin Changing

Greed is good. Greed is right. Greed works. Greed clarifies, cuts through, and captures the essence of the evolutionary spirit.

- Gordon Gecko (Michael Douglas)



Coin Changing

Goal. Given currency denominations: 1, 5, 10, 25, 100, devise a method to pay amount to customer using fewest number of coin

Ex: 34¢.

Cashier's algorithm. At each iteration, add coin of the largest value that does not take us past the amount to be paid.

Ex: \$2.89.

Coin-Changing: Greedy Algorithm

Cashier's algorithm. At each iteration, add coin of the largest value that does not take us past the amount to be paid.

```
Sort coins denominations by value: c_1 < c_2 < ... < c_n.

coins selected s \leftarrow \phi while (x \neq 0) {
  let k be largest integer such that c_k \leq x if (k = 0) return "no solution found" x \leftarrow x - c_k s \leftarrow s \cup \{k\} }

return s
```

Q. Is cashier's algorithm optimal?

Coin-Changing: Analysis of Greedy Algorithm

Theorem. Greed is optimal for U.S. coinage: 1, 5, 10, 25, 100. (penny, nickel, dime, quarter, dollar)

Pf. (by induction on x)

Consider optimal way to change $c_k \le x < c_{k+1}$: greedy takes coin k.

We claim that any optimal solution must also take coin k.

if not, it needs enough coins of type c_1 , ..., c_{k-1} to add up to x table below indicates no optimal solution can do this

Problem reduces to coin-changing $x - c_k$ cents, which, by induction, is optimally solved by greedy algorithm.

k	c _k	All optimal solutions must satisfy	Max value of coins 1, 2,, k-1 in any OPT
1	1	P ≤ 4	-
2	5	$N \le 1$	4
3	10	$N + D \le 2$	4 + 5 = 9
4	25	Q ≤ 3	20 + 4 = 24
5	100	no limit	75 + 24 = 99

Cambio monete: Analisi algoritmo greedy

Teorema. Greedy è ottimale per il conio U.S.A.: 1, 5, 10, 25, 100. Prova. (induzione su x)

- Considera il modo ottimale per $c_{k} \le x < c_{k+1}$: greedy sceglie moneta k.
- Ogni soluzione ottimale contiene la moneta k.
 - altrimenti, ci sarebbero monete di tipo $c_1, ..., c_{k-1}$ che sommano ad x
 - nessuna soluzione ottimale può farlo, come si vede dalla tabella

k	c _k	Tutte le soluzioni ottimali soddisfano	Massimo valore delle monete 1, 2,, k-1 in una sol. ottimale	
1	1	penny ≤ 4	-	5 ≤ x < 10
2	5	nickel ≤ 1	4	Al massimo
3	10	nickel + dime ≤ 2	4 + 5 = 9	• 4 penny
4	25	quarter≤3	20 + 4 = 24	
5	100	Senza limiti	75 + 24 = 99	

 $5 \le \times < 10$

Se ci fossero 5 penny potrei migliorare con "1 nickel"

Cambio monete: Analisi algoritmo greedy

Teorema. Greedy è ottimale per il conio U.S.A.: 1, 5, 10, 25, 100. Prova. (induzione su \times)

- Considera il modo ottimale per $c_{k} \le x < c_{k+1}$: greedy sceglie moneta k.
- Ogni soluzione ottimale contiene la moneta k.
 - altrimenti, ci sarebbero monete di tipo $c_1, ..., c_{k-1}$ che sommano ad x
 - nessuna soluzione ottimale può farlo, come si vede dalla tabella

k	c _k	Tutte le soluzioni ottimali soddisfano	Massimo valore delle monete 1, 2,, k-1 in una sol. ottimale	
1	1	penny ≤ 4	-	
2	5	nickel ≤ 1	4	10 ≤ x < 25
3	10	nickel + dime ≤ 2	4 + 5 = 9 <	Al massimo • 4 penny e
4	25	quarter≤3	20 + 4 = 24	• 1 nickel
5	100	Senza limiti	75 + 24 = 99	

$$10 \le x < 25$$

Se ci fossero 5 penny potrei migliorare con "1 nickel" Se ci fossero 2 nickel potrei migliorare con "1 dime"

Cambio monete: Analisi algoritmo greedy

Teorema. Greedy è ottimale per il conio U.S.A.: 1, 5, 10, 25, 100. Prova. (induzione su x)

- Considera il modo ottimale per $c_{k} \le x < c_{k+1}$: greedy sceglie moneta k.
- Ogni soluzione ottimale contiene la moneta k.
 - altrimenti, ci sarebbero monete di tipo $c_1, ..., c_{k-1}$ che sommano ad x
 - nessuna soluzione ottimale può farlo, come si vede dalla tabella

k	c _k	Tutte le soluzioni ottimali soddisfano	Massimo valore delle monete 1, 2,, k-1 in una sol. ottimale	
1	1	penny ≤ 4	-	
2	5	nickel ≤ 1	4	25 ≤ x < 100 Al massimo • 4 penny e • 2 dime
3	10	nickel + dime ≤ 2	4 + 5 = 9	
4	25	quarter≤3	20 + 4 = 24 -	
5	100	Senza limiti	75 + 24 = 99	

25 < x < 100

Se ci fossero 3 dime potrei migliorare con "1 quarter + 1 nickel"

Se ci fossero 2 dime e 1 nickel potrei migliorare con "1 quarter"

Se ci fossero 1 dime e 1 nickel avrebbe valore inferiore a "2 dime"

nickel + dime ≤ 2

Cambio monete: Analisi algoritmo greedy

Teorema. Greedy è ottimale per il conio U.S.A.: 1, 5, 10, 25, 100. Prova. (induzione $su \times$)

- Considera il modo ottimale per $c_{k} \le x < c_{k+1}$: greedy sceglie moneta k.
- Ogni soluzione ottimale contiene la moneta k.
 - altrimenti, ci sarebbero monete di tipo $c_1, ..., c_{k-1}$ che sommano ad x
 - nessuna soluzione ottimale può farlo, come si vede dalla tabella

k	c _k	Tutte le soluzioni ottimali soddisfano	Massimo valore delle monete 1, 2,, k-1 in una sol. ottimale	
1	1	penny ≤ 4	-	
2	5	nickel ≤ 1	4	
3	10	nickel + dime ≤ 2	4 + 5 = 9	100 ≤ ×
4	25	quarter≤3	20 + 4 = 24	Al massimo
5	100	Senza limiti	75 + 24 = 99 <	• 3 quarter

100 ≤ ×

Se ci fossero 4 quarter potrei migliorare con "1 dollaro"

Coin-Changing: Analysis of Greedy Algorithm

Observation. Greedy algorithm is sub-optimal for US postal denominations: 1, 10, 21, 34, 70, 100, 350, 1225, 1500.

Counterexample. 140¢.

Greedy: 100, 34, 1, 1, 1, 1, 1, 1.

Optimal: 70, 70.

Cambio monete: Esercizio

Conio euro: 1, 2, 5, 10, 20, 50, 100, 200.

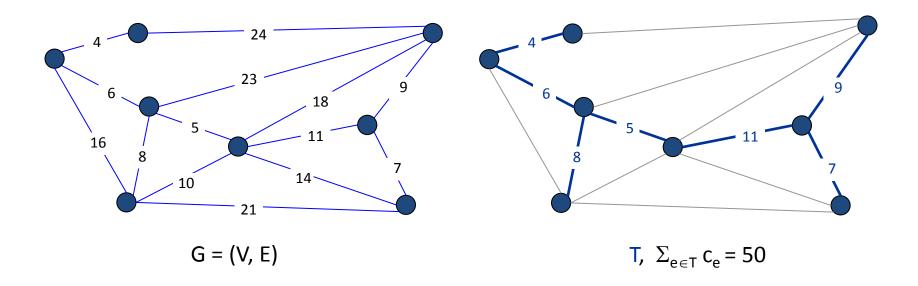
Greedy è ottimale?

4.5 Minimum Spanning Tree

Minimo albero di copertura o ricoprimento

Minimum Spanning Tree (MST)

Minimum spanning tree. Given a connected graph G = (V, E) with real-valued edge weights c_e , an MST is a subset of the edges $T \subseteq E$ such that (V,T) is a tree (connected and acyclic), denoted spanning tree, whose sum of edge weights is minimized.



Recall: a tree with n nodes has n-1 edges.

Cayley's Theorem. There are nⁿ⁻² spanning trees of K_n: can't solve by brute force!

Applications

MST is fundamental problem with diverse applications.

Network design.

telephone, electrical, hydraulic, TV cable, computer, road

Approximation algorithms for NP-hard problems. traveling salesperson problem, Steiner tree

Indirect applications.

max bottleneck paths
LDPC codes for error correction
image registration with Renyi entropy
learning salient features for real-time face verification
reducing data storage in sequencing amino acids in a protein
model locality of particle interactions in turbulent fluid flows
autoconfig protocol for Ethernet bridging to avoid cycles in a network

Cluster analysis.

Greedy Algorithms: possible choices

- Sort by increasing edge costs: Start with some root node s and greedily grow a tree T from s outward. At each step, add the cheapest edge e to T that has exactly one endpoint in T.
- 2. Sort by increasing edge costs: Start with $T = \phi$. Consider edges in ascending order of cost. Insert edge e in T unless doing so would create a cycle.
- Sort by decreasing edge costs: Start with T = E. Consider edges in descending order of cost. Delete edge e from T unless doing so would disconnect T.

Quale può funzionare?

Greedy Algorithms

All three algorithms produce an MST!!!

Prim's algorithm. Start with some root node s and greedily grow a tree T from s outward. At each step, add the cheapest edge e to T that has exactly one endpoint in T.

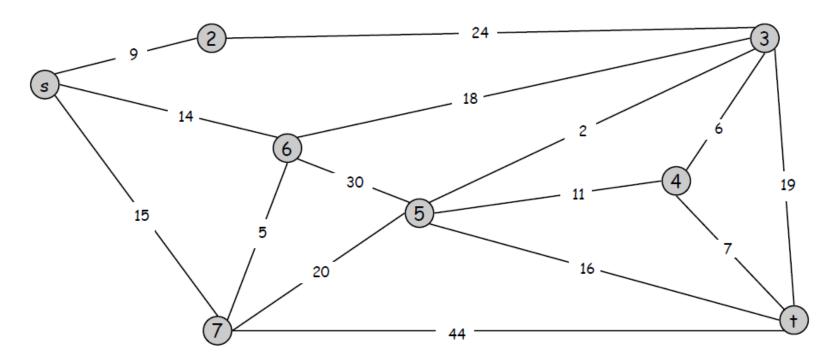
Kruskal's algorithm. Start with $T = \phi$. Consider edges in ascending order of cost. Insert edge e in T unless doing so would create a cycle.

Reverse-Delete algorithm. Start with T = E. Consider edges in descending order of cost. Delete edge e from T unless doing so would disconnect T.

Trovare Minimo Spanning Tree.

- Inizia con T = φ e con un nodo radice s.
- Aggiungi arco a T che è incidente solo su un nodo in T e con costo minimo.

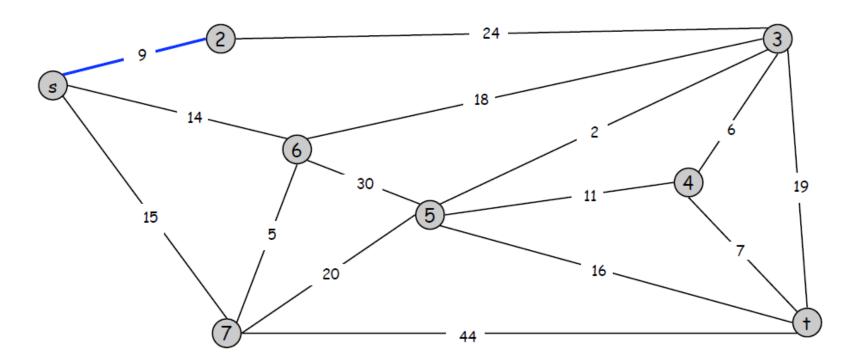
 $T = \phi$



Nota: simile ad algoritmo di Dijkstra

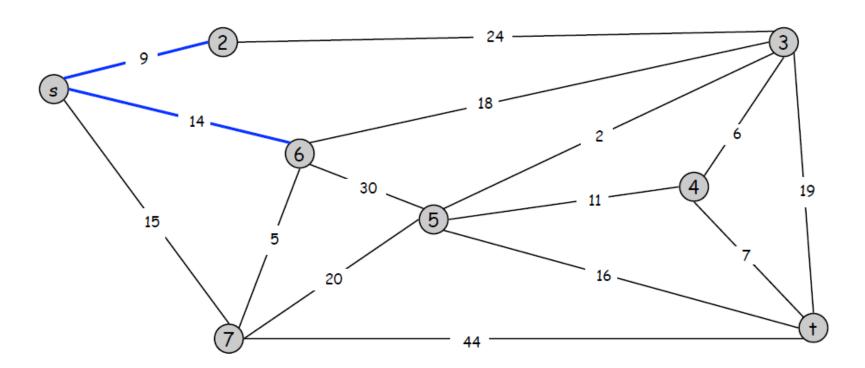
- □ Inizia con $T = \phi$ e con un nodo radice s.
- Aggiungi arco a T che è incidente solo su un nodo in T e con costo minimo.

$$T = \{ \{s,2\} \}$$



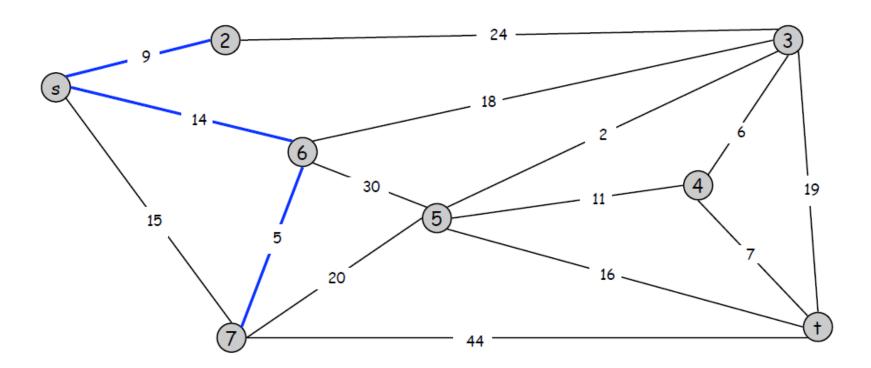
- □ Inizia con $T = \phi$ e con un nodo radice s.
- Aggiungi arco a T che è incidente solo su un nodo in T e con costo minimo.

$$T = \{ \{s,2\}, \{s,6\} \}$$



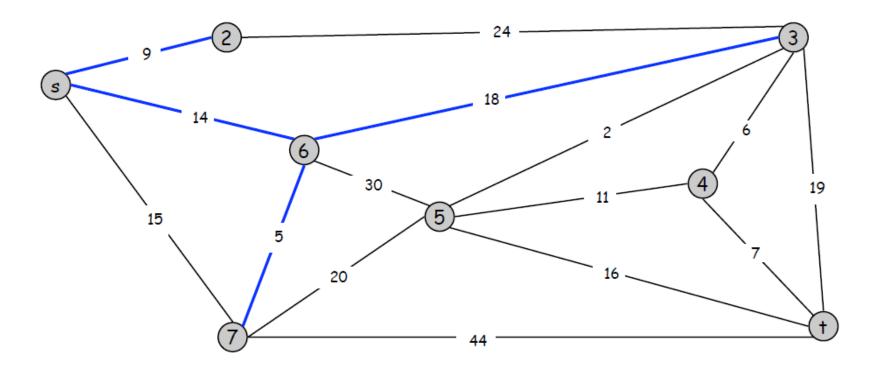
- Inizia con T = φ e con un nodo radice s.
- Aggiungi arco a T che è incidente solo su un nodo in T e con costo minimo.

$$T = \{ \{s,2\}, \{s,6\}, \{6,7\} \}$$



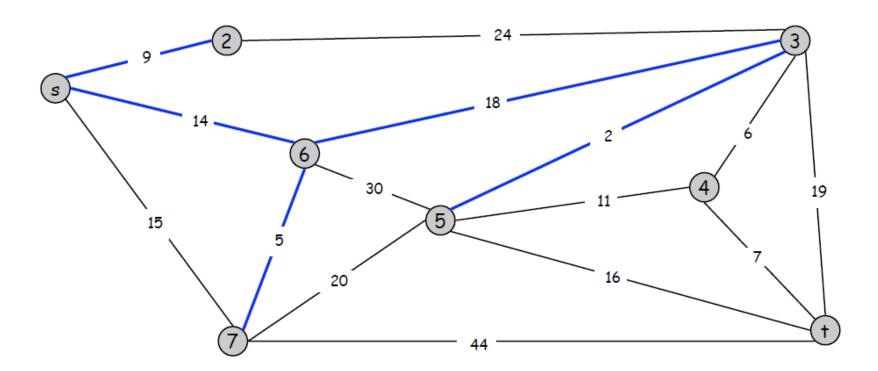
- □ Inizia con $T = \phi$ e con un nodo radice s.
- Aggiungi arco a T che è incidente solo su un nodo in T e con costo minimo.

$$T = \{ \{s,2\}, \{s,6\}, \{6,7\}, \{6,3\} \}$$



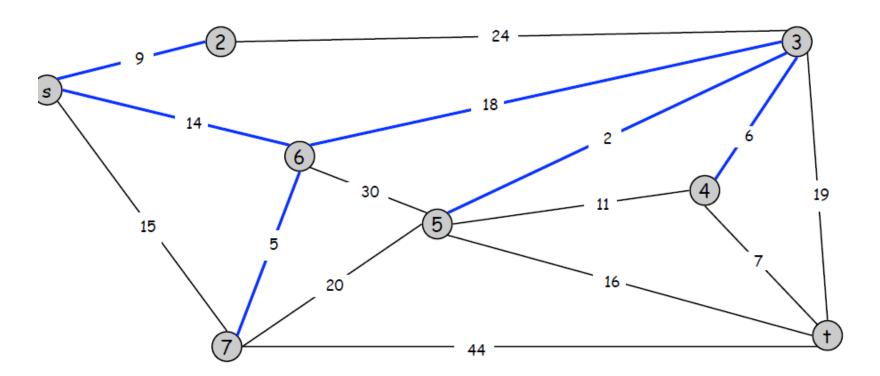
- Inizia con T = φ e con un nodo radice s.
- Aggiungi arco a T che è incidente solo su un nodo in T e con costo minimo.

$$T = \{ \{s,2\}, \{s,6\}, \{6,7\}, \{6,3\}, \{3,5\} \}$$



- □ Inizia con $T = \phi$ e con un nodo radice s.
- Aggiungi arco a T che è incidente solo su un nodo in T e con costo minimo.

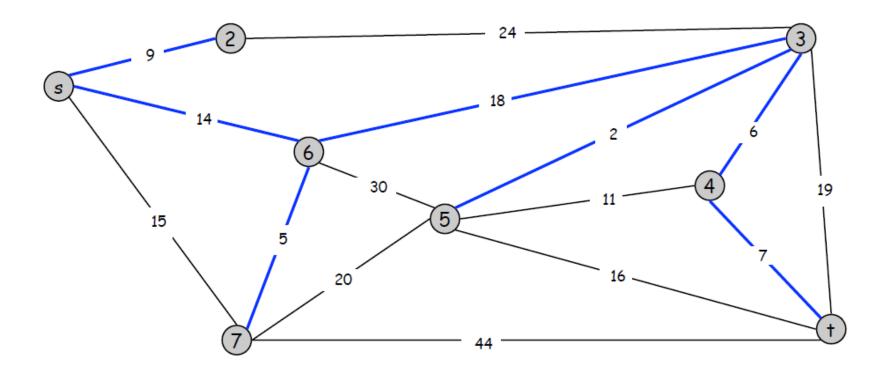
$$T = \{ \{s,2\}, \{s,6\}, \{6,7\}, \{6,3\}, \{3,5\}, \{3,4\} \}$$



Trovare Minimo Spanning Tree.

- □ Inizia con $T = \phi$ e con un nodo radice s.
- Aggiungi arco a T che è incidente solo su un nodo in T e con costo minimo.

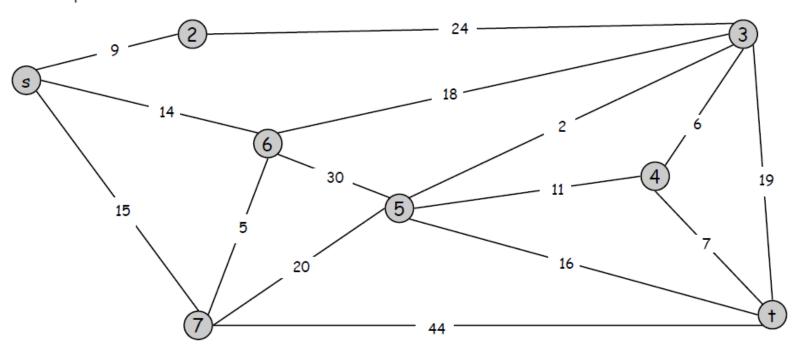
 $T = \{ \{s,2\}, \{s,6\}, \{6,7\}, \{6,3\}, \{3,5\}, \{3,4\}, \{4,t\} \}$ è MST di costo 9+14+5+18+2+6+7=61



Trovare Minimo Spanning Tree.

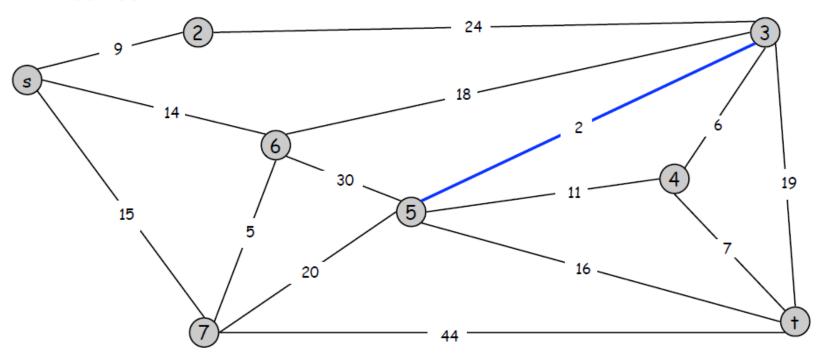
- Inizia con T = φ.
- Considera archi in ordine crescente di costo.
- Inserisci l'arco in T se non crea un ciclo.

 $T = \phi$



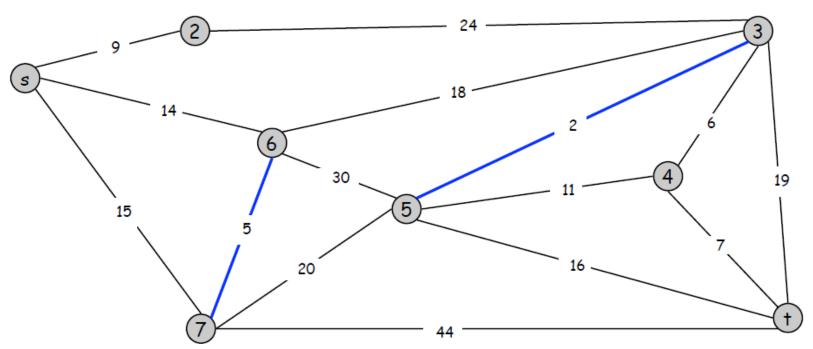
- Inizia con $T = \phi$.
- Considera archi in ordine crescente di costo.
- Inserisci l'arco in T se non crea un ciclo.

$$T = \{ \{s,2\} \}$$



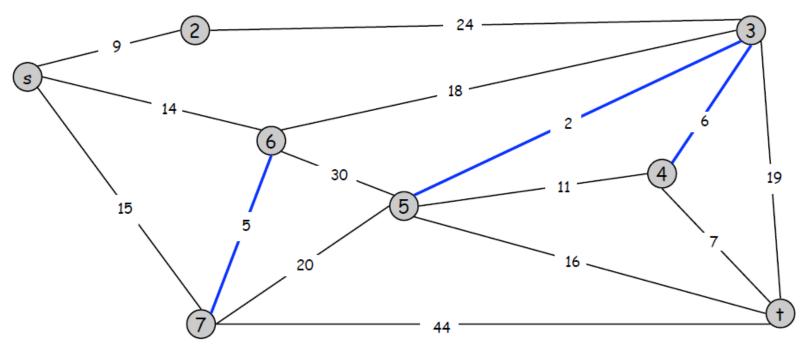
- Inizia con T = φ.
- Considera archi in ordine crescente di costo.
- Inserisci l'arco in T se non crea un ciclo.

$$T = \{ \{s,2\}, \{s,5\} \}$$



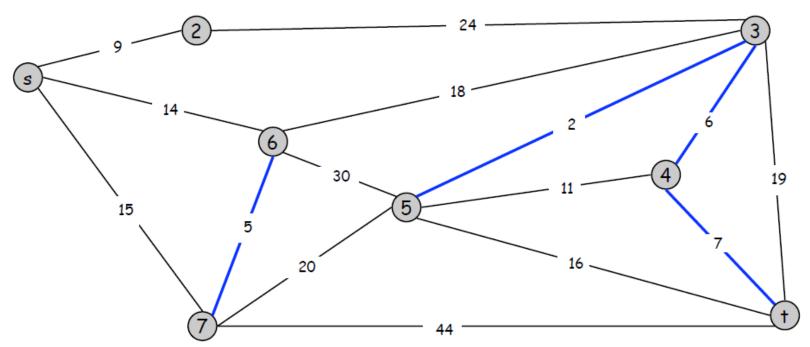
- Inizia con T = φ.
- Considera archi in ordine crescente di costo.
- Inserisci l'arco in T se non crea un ciclo.

$$T = \{ \{s,2\}, \{s,5\}, \{s,6\} \}$$



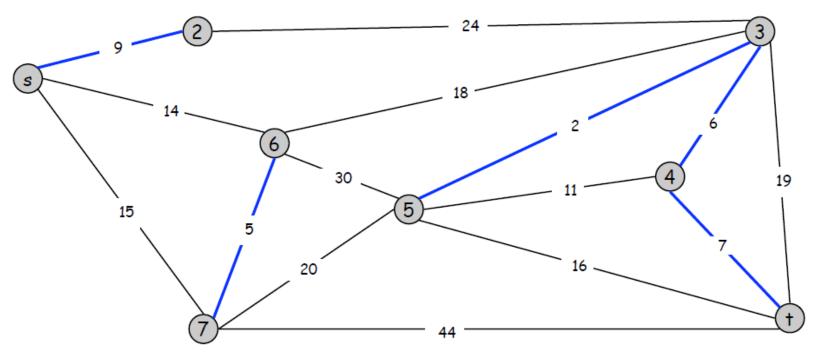
- Inizia con T = φ.
- Considera archi in ordine crescente di costo.
- Inserisci l'arco in T se non crea un ciclo.

$$T = \{ \{s,2\}, \{s,5\}, \{s,6\}, \{s,7\} \}$$



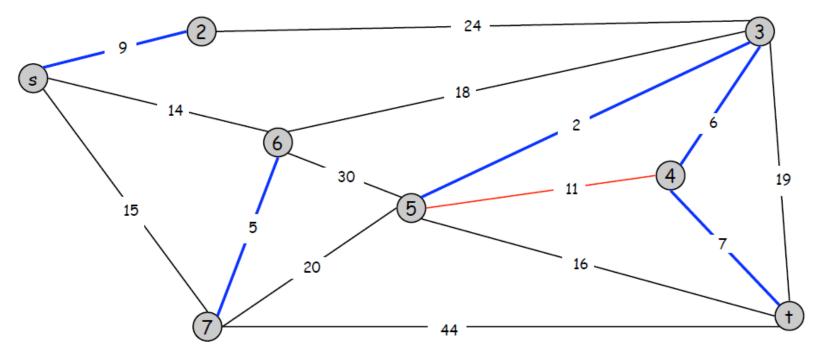
- Inizia con T = φ.
- Considera archi in ordine crescente di costo.
- Inserisci l'arco in T se non crea un ciclo.

$$T = \{ \{s,2\}, \{s,5\}, \{s,6\}, \{s,7\}, \{s,9\} \}$$



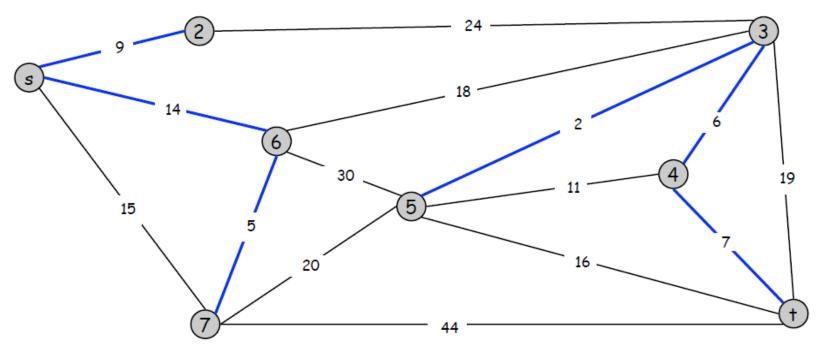
- □ Inizia con $T = \phi$.
- Considera archi in ordine crescente di costo.
- Inserisci l'arco in T se non crea un ciclo.

$$T = \{ \{s,2\}, \{s,5\}, \{s,6\}, \{s,7\}, \{s,9\} \}$$



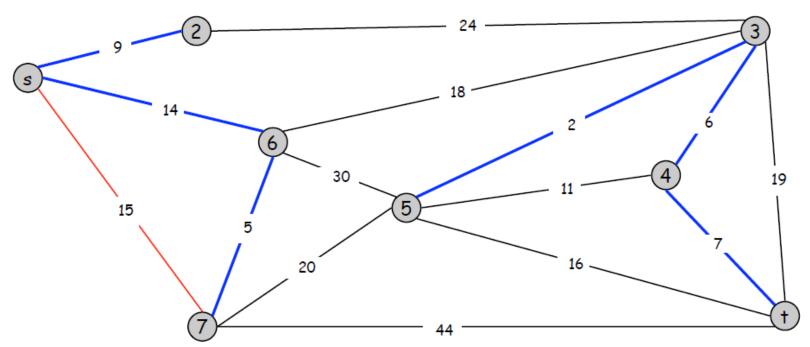
- Inizia con $T = \phi$.
- Considera archi in ordine crescente di costo.
- Inserisci l'arco in T se non crea un ciclo.

$$T = \{ \{s,2\}, \{s,5\}, \{s,6\}, \{s,7\}, \{s,9\}, \{s,14\} \}$$



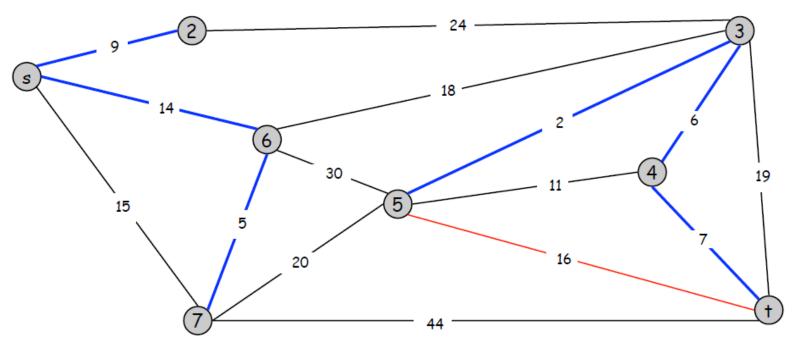
- Inizia con $T = \phi$.
- Considera archi in ordine crescente di costo.
- Inserisci l'arco in T se non crea un ciclo.

$$T = \{ \{s,2\}, \{s,5\}, \{s,6\}, \{s,7\}, \{s,9\}, \{s,14\} \}$$



- Inizia con $T = \phi$.
- Considera archi in ordine crescente di costo.
- Inserisci l'arco in T se non crea un ciclo.

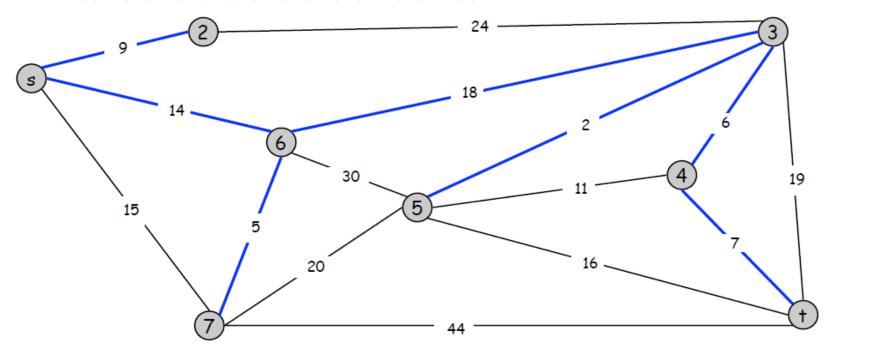
$$T = \{ \{s,2\}, \{s,5\}, \{s,6\}, \{s,7\}, \{s,9\}, \{s,14\} \}$$



Trovare Minimo Spanning Tree.

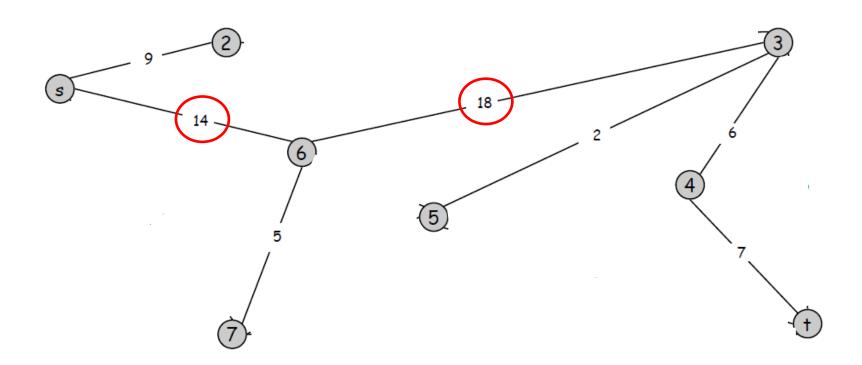
- Inizia con T = φ.
- Considera archi in ordine crescente di costo.
- Inserisci l'arco in T se non crea un ciclo.

 $T = \{ \{s,2\}, \{s,5\}, \{s,6\}, \{s,7\}, \{s,9\}, \{s,14\}, \{s,18\} \}$ è MST di costo 9+14+5+18+2+6+7=61



Reverse-Delete: an example

Reverse-Delete algorithm. Start with T = E. Consider edges in descending order of cost. Delete edge e from T unless doing so would disconnect T.



Confronto fra algoritmi di Prim e di Kruskal

Durante l'esecuzione:

l'algoritmo di Prim mantiene un singolo albero

l'algoritmo di Kruskal un insieme di alberi (foresta).

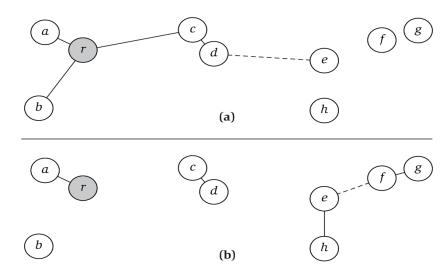


Figure 4.9 Sample run of the Minimum Spanning Tree Algorithms of (a) Prim and (b) Kruskal, on the same input. The first 4 edges added to the spanning tree are indicated by solid lines; the next edge to be added is a dashed line.

Gli alberi restituiti sono gli stessi?

Se i costi sono distinti, il MST è unico. (es. 8, p.192: usa proprietà seguenti). In generale no.

Osservazioni (per il seguito).

In un albero: se tolgo un arco disconnetto; se aggiungo un arco creo un ciclo.

In un grafo connesso: se, togliendo un arco, non disconnetto, l'arco apparteneva ad un ciclo.

Correctness

Correctness of Prim's and Kruskal's algorithms is based on Cut property. Correctness of Reverse-Delete on Cycle property.

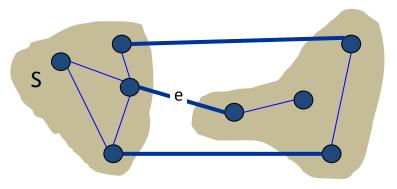
Simplifying assumption. All edge costs c_e are distinct (hence the MST is unique).

Cut property. Let S be any subset of nodes, and let e be the min cost edge with exactly one endpoint in S. Then the MST contains e.

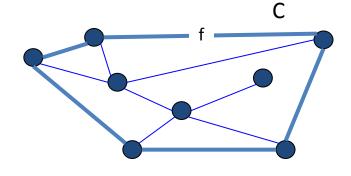
(In altri testi: l'arco Iggero che attraversa il taglio è sicuro per S)

Cycle property. Let C be any cycle, and let f be the max cost edge belonging to C.

Then the MST does not contain f.



e is in the MST



f is not in the MST

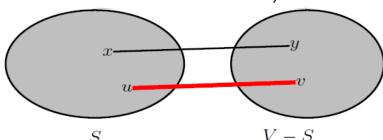
Proof of Cut Property

Simplifying assumption. All edge costs c_e are distinct.

Cut property. Let S be any subset of nodes, and let e be the min cost edge with exactly one endpoint in S. Then the MST contains e.

Pf. (exchange argument)

Supponiamo che ciò non sia vero, e sia T un MST che non contiene e. È ovvio che T dovrà contenere almeno un'arco $a = (x, y) \neq (u, v) = e$ con un'estremo in S e l'altro in V - S (altrimenti come farebbe T a connettere tra di loro tutti i nodi di V?)



Aggiungiamo a T l'arco e = (u, v), (per ipotesi c(u, v) < c(x, y)) che succede nell'albero T? Si crea un ciclo! Eliminiamo allora l'arco (x, y). I nodi in S rimangono connessi

tra di loro (l'eliminazione dell'arco (x,y) non influenza i cammini in S), analoga cosa per i nodi in $V-S \Rightarrow$ da ogni nodo di S è raggiungibile ogni nodo di V-S, attraverso l'arco $(u,v) \Rightarrow \exists un$ nuovo albero T' che connette tutti i vertici di V, con $\mathsf{costo}(T') < \mathsf{costo}(T)$, contro l'ipotesi.

Proof of Cycle Property

Simplifying assumption. All edge costs c_e are distinct.

Cycle property. Let C be any cycle in G, and let e be the max cost edge belonging to C. Then the MST T* does not contain e.

Pf. (exchange argument)

Suppose *e* belongs to T*, and let's see what happens.

Deleting e from T* disconnects T* in S and V\S.

In the cycle C there exists another edge, say e'=(u',v'), with u' in S and v' in V\S.

 $T' = T^* \cup \{e'\} - \{e\}$ is also a spanning tree.

Since $c_{\rho'} < c_{\rho}$ then $cost(T') < cost(T^*)$.

This is a contradiction. •

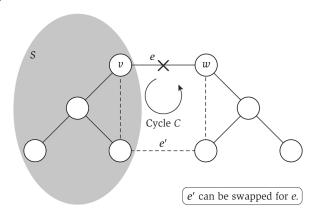


Figure 4.11 Swapping the edge e' for the edge e in the spanning tree T, as described in the proof of (4.20).

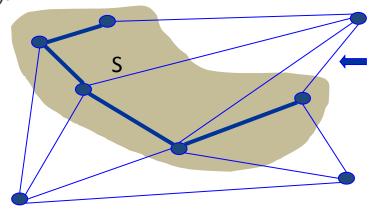
Prim's Algorithm: Proof of Correctness

Prim's algorithm. [Jarník 1930, Dijkstra 1957, Prim 1959]

Prim's algorithm. Start with some root node s and greedily grow a tree T from s outward. At each step, add the cheapest edge e to T that has exactly one endpoint in T.

Pf. Che l'algoritmo di Prim produca un albero è ovvio, visto che aggiunge archi solo da nodi già tra di loro connessi in S a nuovi nodi "fuori" di S (quindi non crea cicli). Inoltre, ad ogni passo aggiunge a T l'arco di minimo costo che ha un estremo u in S (insieme dei nodi su cui un albero ricoprente parziale è stato già costruito) ad un nodo $v \in V - S$.

Dalla proprietà prima vista, tale arco appartiene ad ogni MST del grafo (cioè, di nuovo l'algoritmo non inserisce mai archi che non appartengono a MST, quindi produce effettivamente un MST).



Implementation: Prim's Algorithm (un'idea)

Implementation. Use a priority queue Q "a la Dijkstra".

Maintain set of explored nodes S and set of unexplored nodes Q.

For each unexplored node v in Q, maintain as priority an attachment cost a[v] = cost of cheapest edge v to a node in S.

 $O(n^2)$ with an array; $O(m \log n)$ with a binary heap.

```
Prim(G, c) {
   foreach (v \in V) a[v] \leftarrow \infty; a[r] \leftarrow 0
   Initialize an empty priority queue Q
   foreach (v \in V) insert v onto Q
   Initialize set of explored nodes S \leftarrow \phi
   while (Q is not empty) {
       u ← delete min element from O
       S \leftarrow S \cup \{u\}
       foreach (edge e = (u, v) incident to u)
            if ((v \notin S) \text{ and } (c_e < a[v]))
               decrease priority a[v] to ca
```

L'algoritmo di Kruskal produce un MST

Aggiungi a T uno ad uno gli archi del grafo, in ordine di costo crescente, saltando gli archi che creano cicli con gli archi già aggiunti.

- ullet Sia e=(v,w) un generico arco inserito in T dall'algoritmo di Kruskal, e sia S l'insieme di tutti i nodi connessi a v attraverso un cammino, al momento appena prima di aggiungere (v,w) a T.
- **●** Ovviamente vale che $v \in S$, mentre $w \notin S$, altrimenti l'arco (v, w) creerebbe un ciclo.
- Inoltre, negli istanti precedenti l'algoritmo non ha incontrato nessun arco da nodi in S a nodi in V-S, altrimenti un tale arco sarebbe stato aggiunto, visto che non creava cicli.
- Pertanto l'arco (v,w) è il primo arco da S a V-S che l'algoritmo incontra, ovvero è l'arco di minor costo da S a V-S che, abbiamo visto appartiene ad ogni MST.
- Ci rimane da mostrare che l'output dell'algoritmo di Kruskal è un albero

Facciamolo:

- ullet Sicuramente, per costruzione, l'output (V,T) non contiene cicli.
- **●** Potrebbe (V, T) non essere connesso? Ovvero potrebbe esistere un $\emptyset \neq S \subset V$ per cui in T non esiste alcun arco da S a V S?
- ullet Sicuramente no! Infatti, poichè il grafo G è connesso, un tale arco e esiste sicuramente in G e poichè l'algoritmo di Kruskal esamina tutti gli archi di G, prima o poi incontrerà tale arco e e lo inserirà, visto che non crea cicli.

Implementation: Kruskal's Algorithm (un'idea)

Implementation. Use the union-find data structure.

Build set T of edges in the MST.

Maintain set for each connected component; initially a set for each node.

```
O(m log n) for sorting and O(m \alpha (m, n)) for union-find.

m \le n^2 \Rightarrow \log m is O(log n) essentially a constant
```

```
Kruskal(G, c) {
    Sort edges weights so that c_1 \le c_2 \le \ldots \le c_m.
    T \leftarrow \phi
    foreach (u \in V) make a set containing singleton u
    for i = 1 to m are u and v in different connected components?
       (u,v) = e_i
       if (u and v are in different sets) {
           T \leftarrow T \cup \{e_i\}
           merge the sets containing u and v
                               merge two components
    return T
```

Correttezza Reverse-Delete

Reverse-Delete algorithm. Start with T = E. Consider edges in descending order of cost. Delete edge e from T unless doing so would disconnect T.

Prova. Sia e un arco eliminato dall'algoritmo. Poiché e non disconnette il grafo, appartiene ad un ciclo. Di questo ciclo è l'arco di costo massimo (per la scelta effettuata). Per la proprietà del ciclo e non appartiene a nessun MST.

Alla fine (V,T) sarà un albero: connesso per costruzione dell'algoritmo; aciclico, altrimenti l'algoritmo non si sarebbe arrestato.

Lexicographic Tiebreaking (facoltativo)

To remove the assumption that all edge costs are distinct:

perturb all edge costs by tiny amounts to break any ties.

Impact. Kruskal and Prim only interact with costs via pairwise comparisons. If perturbations are sufficiently small, MST with perturbed costs is MST with original costs.

```
boolean less(i, j) {
   if      (cost(e<sub>i</sub>) < cost(e<sub>j</sub>)) return true
   else if (cost(e<sub>i</sub>) > cost(e<sub>j</sub>)) return false
   else if (i < j) return true
   else return false
}</pre>
```

Implementation. Can handle arbitrarily small perturbations implicitly by breaking ties lexicographically, according to index.

An application: Clustering

Distance function. Numeric value specifying "closeness" of two objects.

number of corresponding pixels whose

intensities differ by some threshold

Fundamental problem. Divide into clusters so that points in different clusters are far apart (and points in same cluster are close enough).

Routing in mobile ad hoc networks.

Identify patterns in gene expression.

Document categorization for web search.

Similarity searching in medical image databases

Skycat: cluster 10⁹ sky objects into stars, quasars, galaxies.

Clustering of Maximum Spacing

k-clustering. Divide objects into k non-empty groups.

Distance function. Assume it satisfies several natural properties.

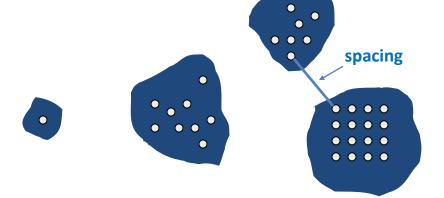
```
d(p_i, p_j) = 0 iff p_i = p_j (identity of indiscernibles)

d(p_i, p_j) \ge 0 (nonnegativity)

d(p_i, p_i) = d(p_i, p_i) (symmetry)
```

Spacing. Min distance between any pair of points in different clusters.

Clustering of maximum spacing. Given an integer k, find a k-clustering of maximum spacing.



k = 4

Esempio

d=distanza euclidea. k=3

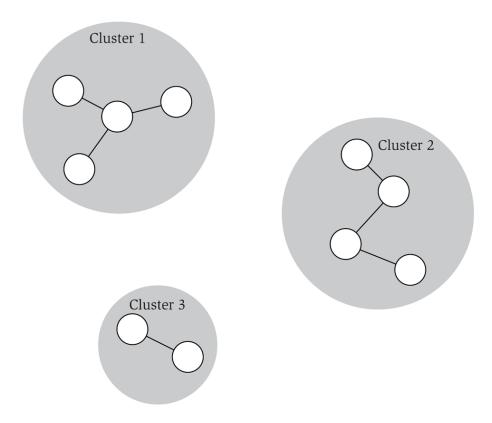


Figure 4.14 An example of single-linkage clustering with k = 3 clusters. The clusters are formed by adding edges between points in order of increasing distance.

Greedy Clustering Algorithm

Single-link k-clustering algorithm.

Form a graph on the vertex set U, corresponding to n clusters.

Find the closest pair of objects such that each object is in a different cluster, and add an edge between them.

Repeat n-k times until there are exactly k clusters.

Key observation. This procedure is precisely Kruskal's algorithm (except we stop when there are k connected components).

Remark. Equivalent to finding an MST and deleting the k-1 most expensive edges.

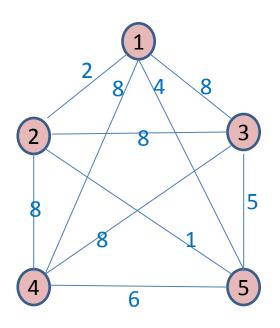
Esempio dell'algoritmo di clustering

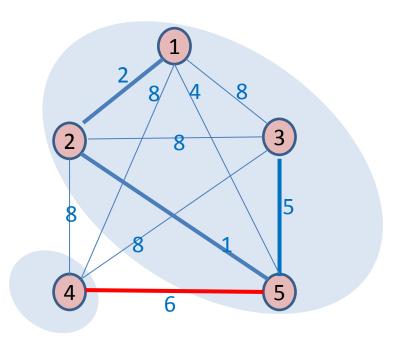
 $U = \{1,2,3,4,5\}; d(i,j) come indicata sull'arco (i,j); k=2.$

Costruisco il grafo come in figura a sinistra.

Eseguo l'algoritmo di Kruskal. Seleziono in ordine:

(2,5), (1,2), (3,5), (4,5). Cancello gli ultimi k-1=1 archi inseriti (ovvero (4,5)). Ottengo il 2-clustering: $C1=\{1,2,3,5\}$, $C2=\{4\}$ il cui spacing è $d^*=6$





Nota: d*= costo del (k-1)-esimo arco più costoso del MST.

Greedy Clustering Algorithm: Analysis

Theorem. Let C* denote the clustering C_1^* , ..., C_k^* formed by deleting the k-1 most expensive edges of a MST. C* is a k-clustering of max spacing.

Pf. Let C denote some other clustering C_1 , ..., C_k . The spacing of C* is the length d* of the $(k-1)^{st}$ most expensive edge. Let p_i , p_j be in the same cluster in C*, say C_r^* , but different clusters in C, say C_s and C_t .

Some edge (p, q) on p_i - p_j path in C^*_r spans two different clusters in C.

All edges on p_i - p_j path have length $\leq d^*$ since Kruskal chose them.

Spacing of C is \leq d* since p and q are in different clusters. \blacksquare

Reti di flusso

Problema del flusso massimo

Motivazione iniziale: problemi di traffico su reti di trasporto

- Trasporti ferroviari, autostradali,...
- Trasporto di liquidi in reti idriche
- Trasporto di pacchetti di dati in una rete di comunicazione.

Applicazioni non banali / riduzioni:

- Data mining.
- Open-pit mining.
- Project selection.
- Airline scheduling.
- Bipartite matching.
- Baseball elimination.
- Image segmentation.
- Network connectivity.

- Network reliability.
- Distributed computing.
- Egalitarian stable matching.
- Security di statistical data.
- Network intrusion detection.
- Multi-camera scene reconstruction.
- Molte altre ancora. . .

Flusso massimo e Taglio minimo

Flusso massimo e taglio minimo

- Due problematiche molto ricche.
- Problemi importanti in ottimizzazione combinatoriale.
- Dualità matematica.

Algoritmo di Ford-Fulkerson

Algoritmo incrementale basato sulle reti residuali e i cammini aumentanti

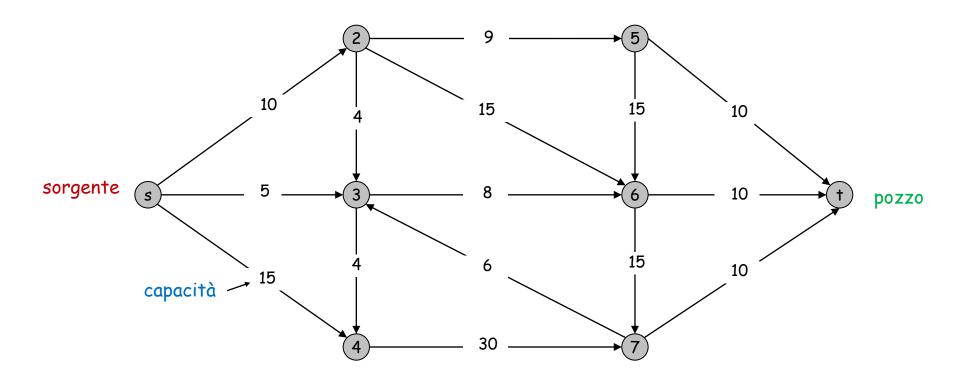
(parr. 7.1, 7.2)

Un'applicazione: matching in un grafo bipartito (par. 7.5)

Reti di flusso

Astrazione per materiale che "scorre" attraverso gli archi (come liquidi nei tubi). Una rete di flusso è G = (V, E) = grafo orientato con

- due nodi particolari: s = sorgente (senza archi entranti)
 t = pozzo (senza archi uscenti).
- c(e) = capacità dell'arco e.



Flusso

Def. Un flusso s-t è una funzione $f: E \rightarrow R^+$ che soddisfa:

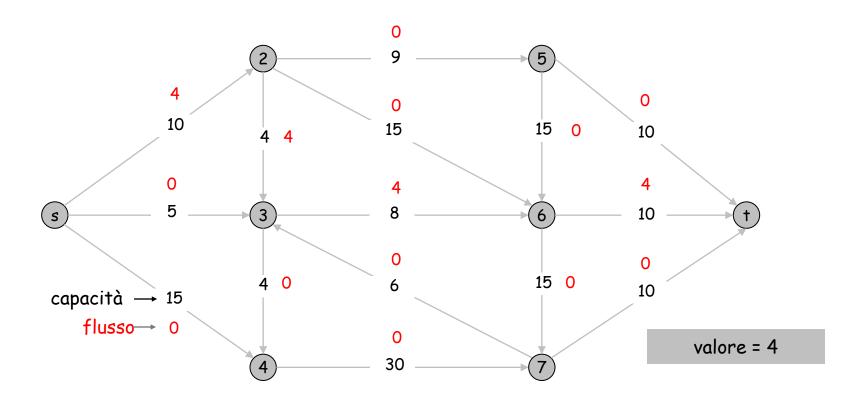
- per ogni $e \in E$: $0 \le f(e) \le c(e)$ (capacità)

- per ogni $v \in V \{s, t\}$: $\sum f(e) = \sum f(e)$ (conservazione)

$$\sum_{e \text{ into } v} f(e) = \sum_{e \text{ out of } v} f(e)$$

Def. Il valore del flusso f è: $v(f) = \sum f(e)$.

$$v(f) = \sum_{e \text{ out of } s} f(e)$$
.



Flusso

Def. Un flusso s-t è una funzione $f: E \rightarrow R^+$ che soddisfa:

• per ogni $e \in E$:

$$0 \le f(e) \le c(e)$$

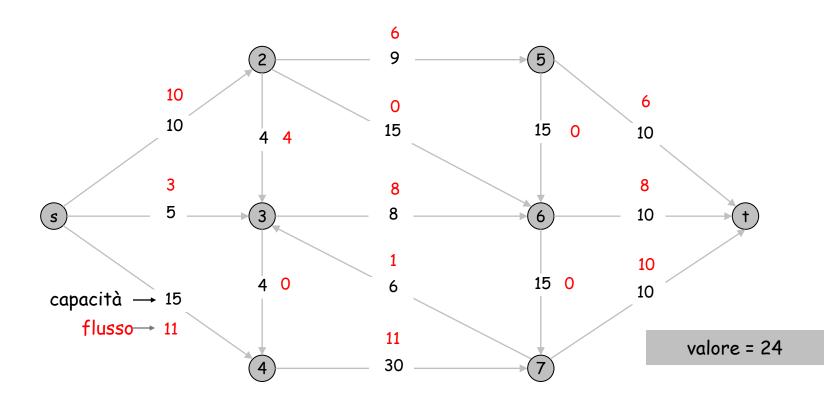
(capacità)

• per ogni $v \in V - \{s, t\}$: $\sum f(e) = \sum f(e)$ (conservazione)

$$\sum_{e \text{ in to } v} f(e) = \sum_{e \text{ out of } v} f(e)$$

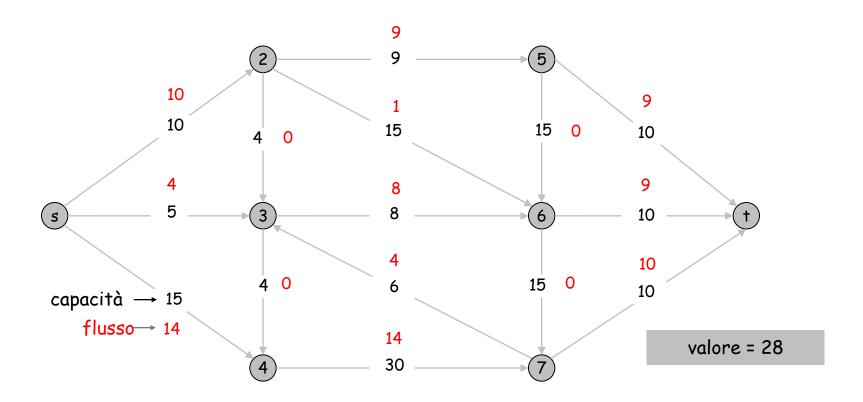
Def. Il valore del flusso f è:

$$v(f) = \sum_{e \text{ out of } s} f(e)$$
.



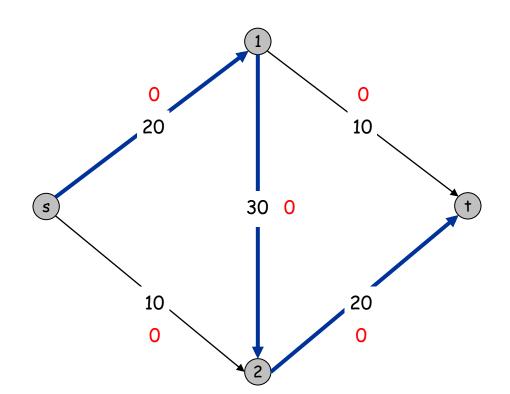
Problema del massimo flusso

Problema del massimo flusso. Trovare il flusso s-t di massimo valore.



Algoritmo greedy.

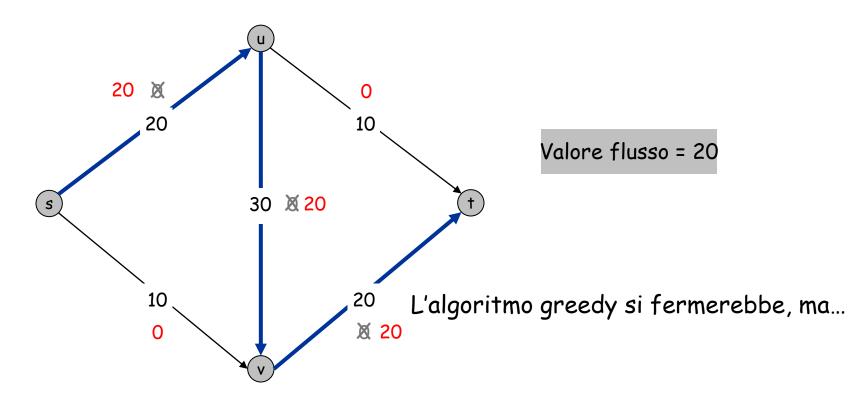
- Iniziare con f(e) = 0 per ogni arco $e \in E$.
- Trovare un cammino P da s a t in cui ogni arco ha f(e) < c(e).
- Aumentare il flusso lungo il cammino P.
- Ripetere finchè è possibile.



Valore flusso = 0

Algoritmo greedy.

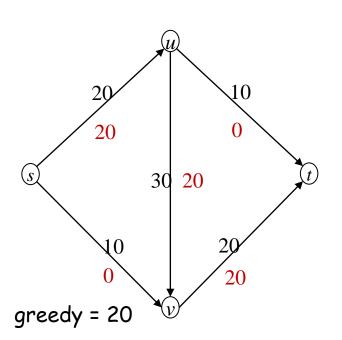
- Iniziare con f(e) = 0 per ogni arco $e \in E$.
- Trovare un cammino P da s a t in cui ogni arco ha f(e) < c(e).
- Aumentare il flusso lungo il cammino P.
- Ripetere finchè è possibile.

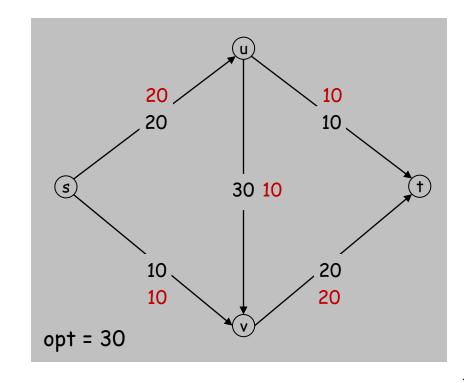


Algoritmo greedy.

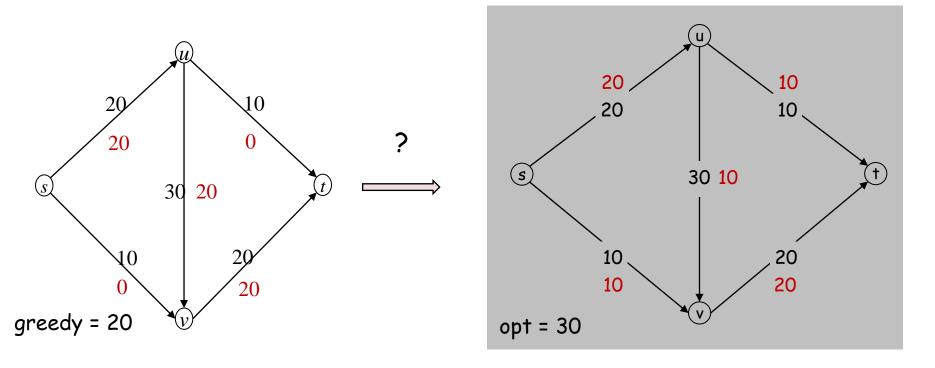
- Iniziare con f(e) = 0 per ogni arco $e \in E$.
- Trovare un cammino s-t P in cui ogni arco ha f(e) < c(e).
- Aumentare il flusso lungo il cammino P.
- Ripetere finchè è possibile.

Ottimalità locale \neq ottimalità globale





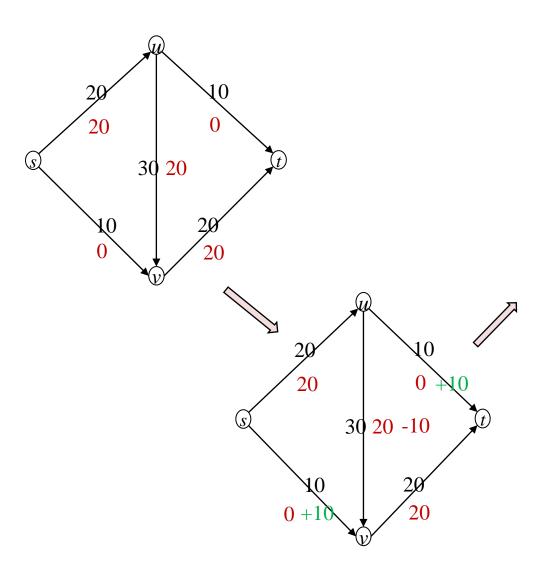
Come ottenere la soluzione ottima?

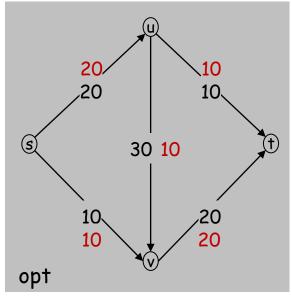


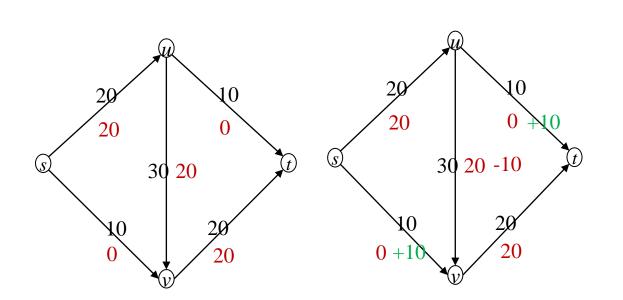
Se volessimo aggiungere 10 unità su (s,v), violeremmo la proprietà di conservazione in v.

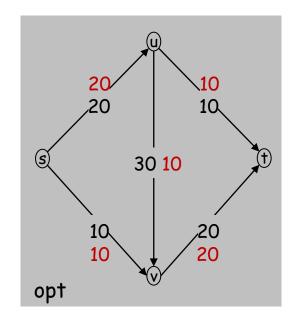
Per ristabilirla potremmo togliere 10 unità (delle 20) entranti in v sull'arco (u,v), ovvero potremmo fare scorrere 10 unità "contro-senso" da v ad u ed infine aggiungere le 10 unità da u a t.

Come ottenere la soluzione ottima?









Definiamo un nuovo grafo che tenga conto di 2 aspetti:

Per ogni arco e = (u,v) con f(e) < c(e), ci sono altre c(e)-f(e) unità disponibili da poter fare passare da u a v (in avanti)

Per ogni arco e = (u,v) con f(e) > 0 ci sono f(e) unità che possiamo togliere/disfare facendo passare del flusso da v a u (indietro)

Grafo residuale

Dato un grafo G=(V,E) e un flusso f:

Arco originario: $e = (u, v) \in E$.

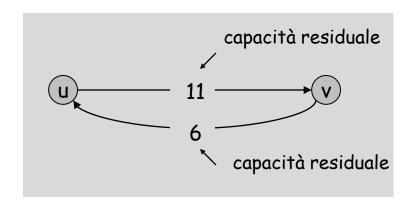
flusso f(e), capacità c(e).

capacità u 17 v flusso

Arco residuale.

- $e = (u, v) e e^{R} = (v, u).$
- Capacità residuale:

$$c_f(e) = \begin{cases} c(e) - f(e) & \text{if } e \in E \\ f(e) & \text{if } e^R \in E \end{cases}$$



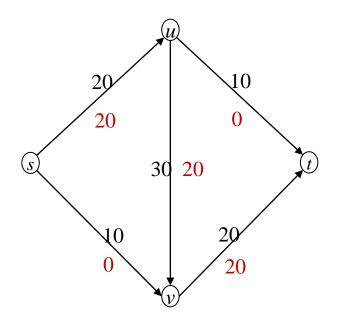
Grafo residuale : $G_f = (V, E_f)$.

- Archi residuali con capacità residuale positiva.
- $E_f = \{e : f(e) < c(e)\} \cup \{e^R : f(e) > 0\}$

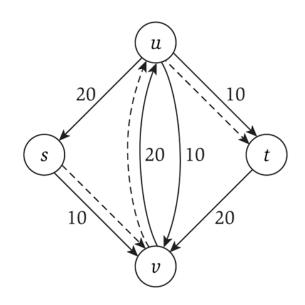
Cammino aumentante: cammino semplice da s a t in G_f

Grafo residuale: esempio

Grafo G con capacità e flusso f



Grafo residuale G_f



P=s-v-u-t è un cammino aumentante

Posso mandare al più b=10 unità di flusso lungo P:

$$f((s,v)) = 0 + 10$$

 $f((u,v)) = 20 - 10$
 $f((u,t)) = 0 + 10$

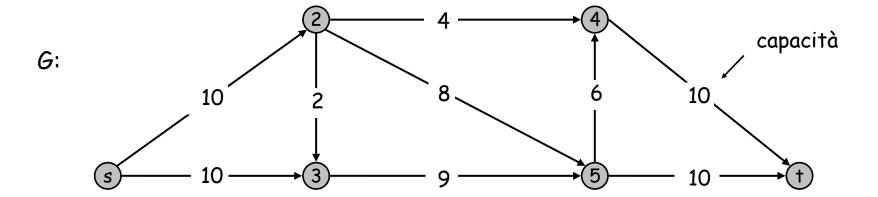
Algoritmo del cammino aumentante

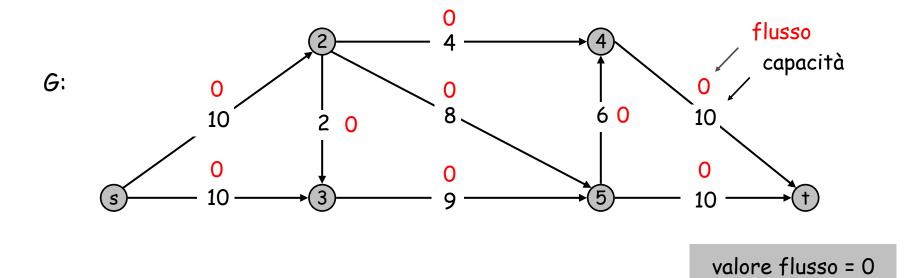
Sia P un cammino semplice s-t in G_f

Minima capacità residuale di un arco di P

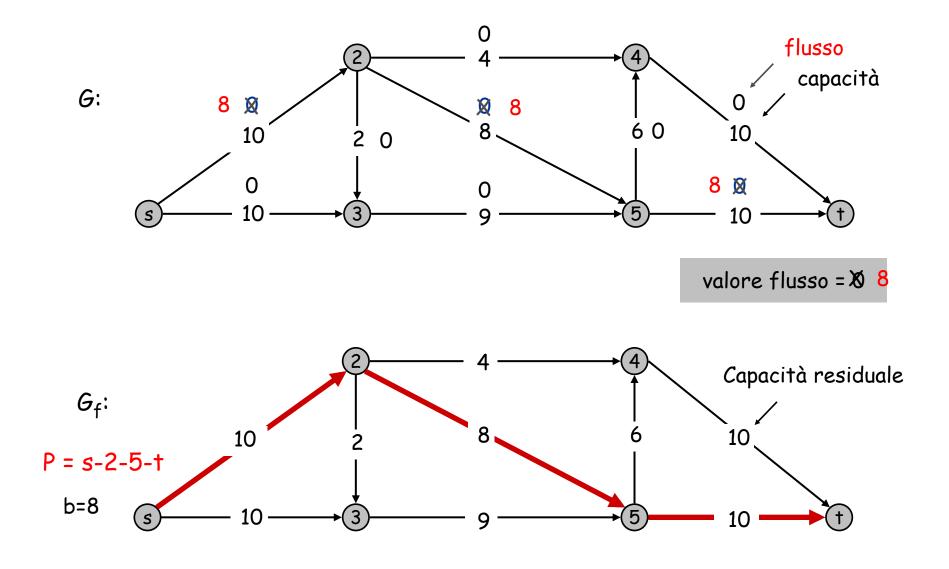
```
Augment(f, c, P) {
   b ← bottleneck(P,f)
   foreach e ∈ P {
      if (e ∈ E) in G: f(e) ← f(e) + b
      else in G: f(e<sup>R</sup>) ← f(e<sup>R</sup>) - b
   }
   return f
}
```

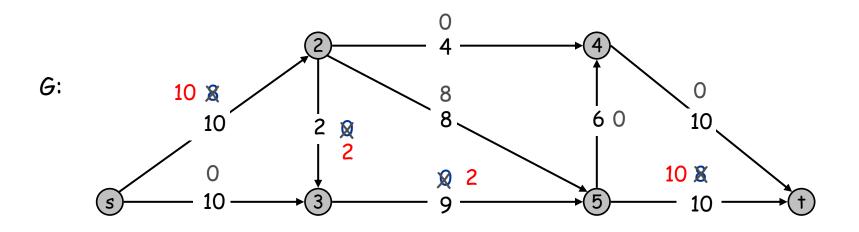
```
\label{eq:ford-Fulkerson} \begin{split} &\text{Ford-Fulkerson}(G,\ s,\ t,\ c)\ \{\\ &\text{foreach}\ e\in E\ f(e)\leftarrow 0\\ &G_f\leftarrow \text{grafo residuale} \end{split} \label{eq:while} \begin{aligned} &\text{while}\ (\text{esiste un cammino aumentante P in }G_f)\ \{\\ &f\leftarrow \text{Augment}(f,\ c,\ P)\\ &\text{aggiorna }G_f \end{aligned} \  \} \\ &\text{return f} \end{split}
```



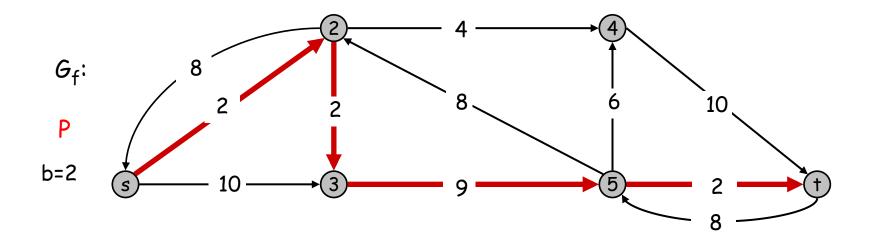


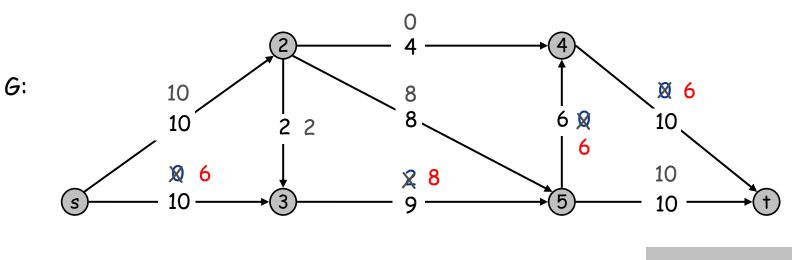
$$G_{f} = G$$



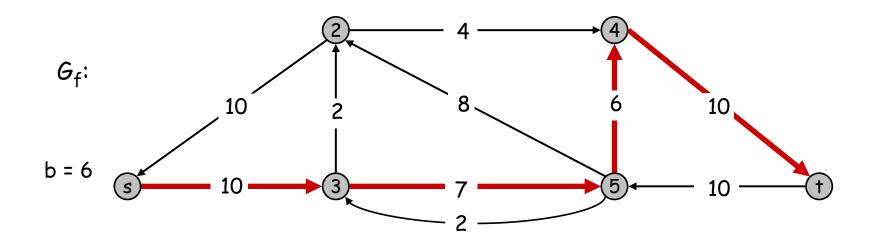


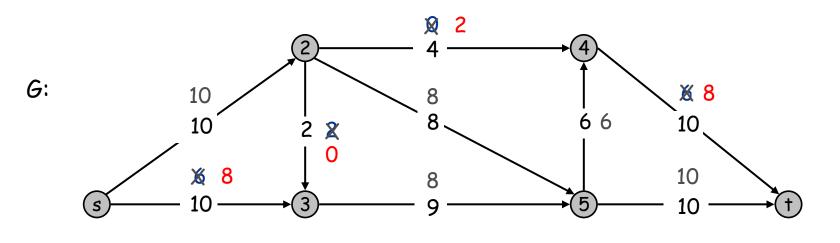
valore flusso = **%** 10



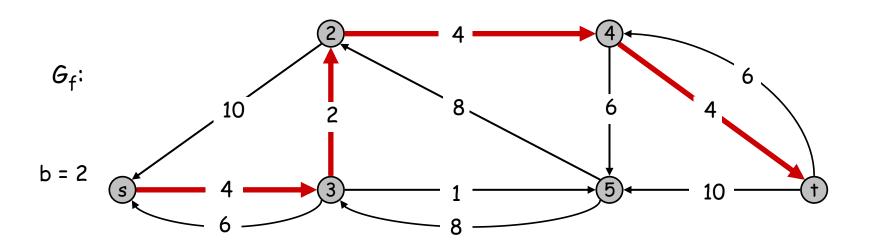


valore flusso = 10 16

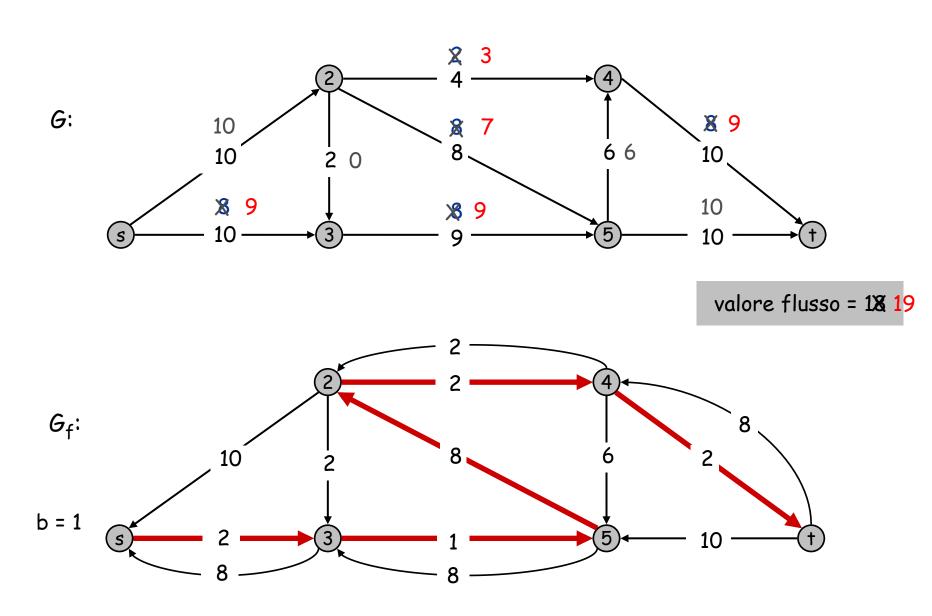


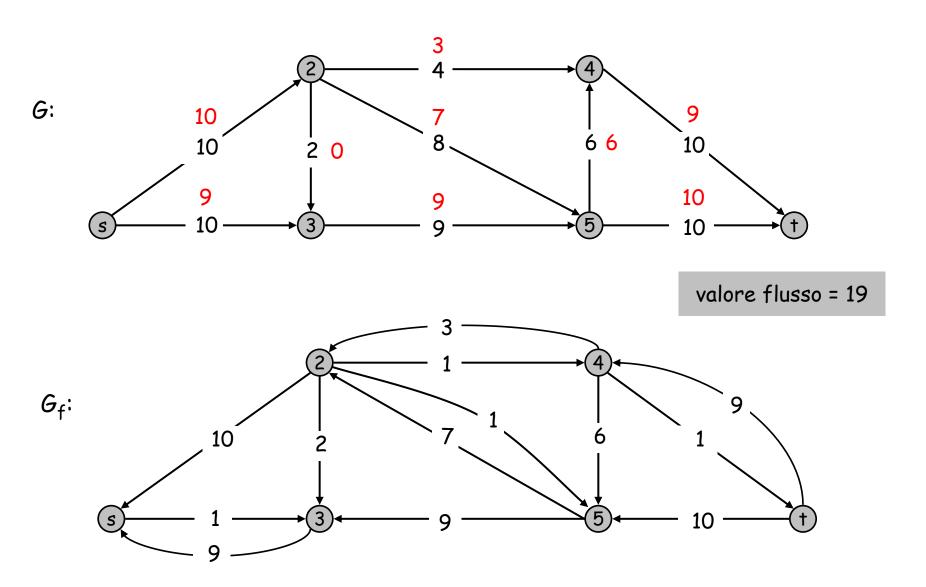


valore flusso = 1618



Nota: l'arco (3,2) in G_f è un arco indietro: (2,3) è in G_f quindi $f((2,3)) \leftarrow f((2,3)) - b$





Non ci sono più cammini aumentanti P in G_f : l'algoritmo termina.

Algoritmo di Ford-Fulkerson: correttezza

Vogliamo provare che il flusso fornito dall'algoritmo di Ford-Fulkerson è il massimo possibile.

Una limitazione superiore al flusso è data da $C = \sum_{e \text{ esce da } s} c(e)$

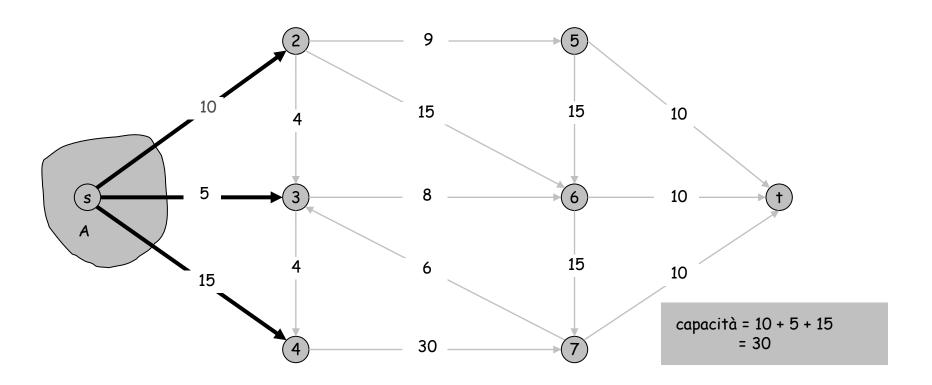
Infatti
$$v(f) = \sum_{e \text{ esce da } s} f(e) \le \sum_{e \text{ esce da } s} c(e) = C$$

Una limitazione superiore al flusso più utile si può ottenere introducendo il concetto di taglio in una rete di flusso.

Taglio

Def. Un taglio s-t è una partizione (A, B) di V con $s \in A$ e $t \in B$.

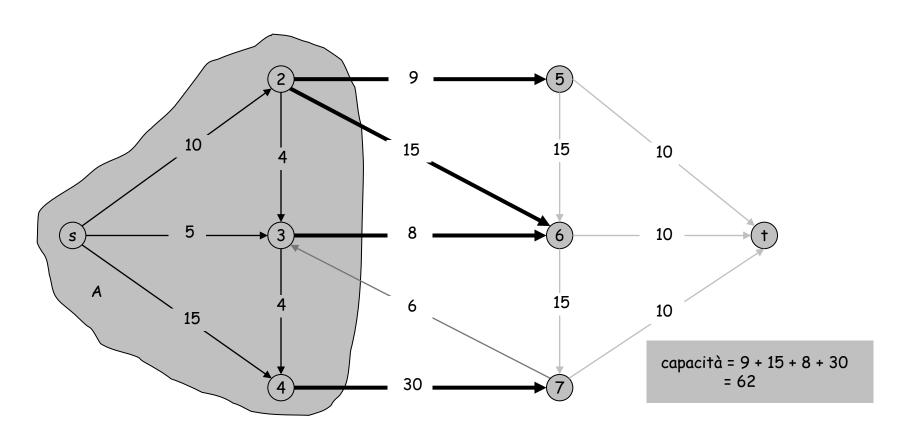
Def. La capacità di un taglio (A, B) è: $cap(A,B) = \sum_{e \text{ esce da } A} c(e)$



Taglio

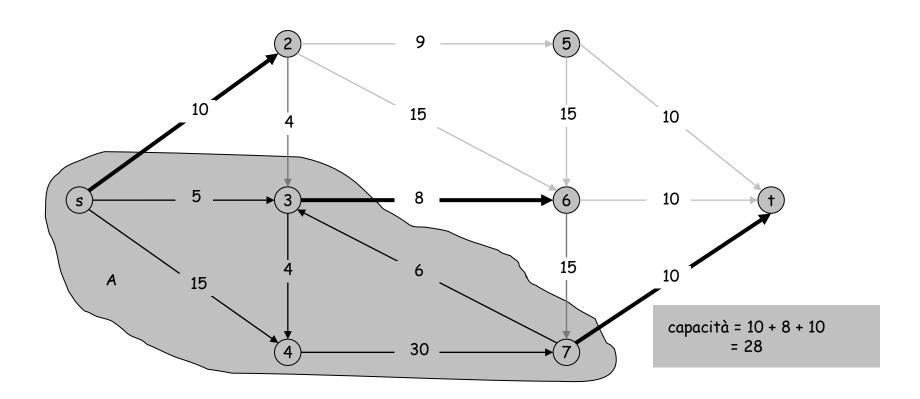
Def. Un taglio s-t è una partizione (A, B) diV con $s \in A$ e $t \in B$.

Def. La capacità di un taglio (A, B) è: $cap(A,B) = \sum_{e \text{ out of } A} c(e)$

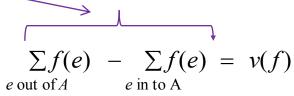


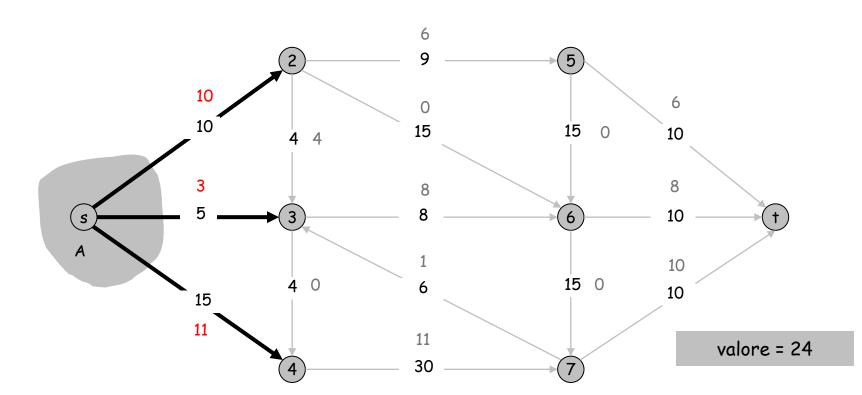
Problema del taglio minimo

Problema del minimo taglio s-t. Trovare un taglio s-t di capacità minima in una rete di flusso.

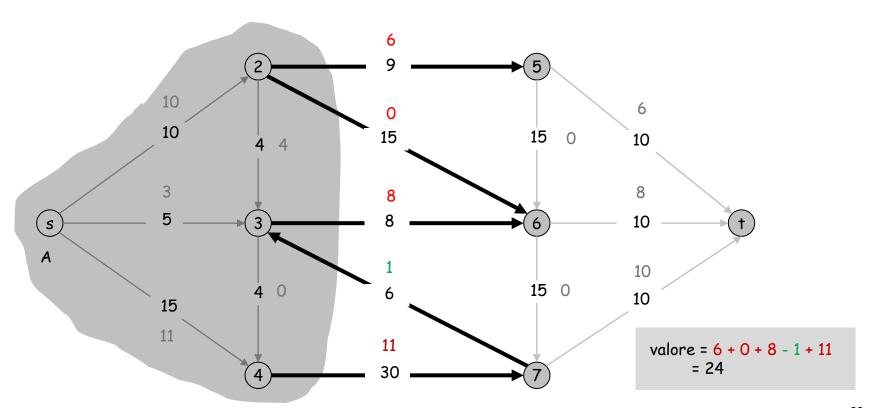


Lemma del valore del flusso. Sia f un flusso e sia (A, B) un taglio s-t. Allora, il flusso netto inviato attraverso il taglio è uguale alla quantità che lascia s.

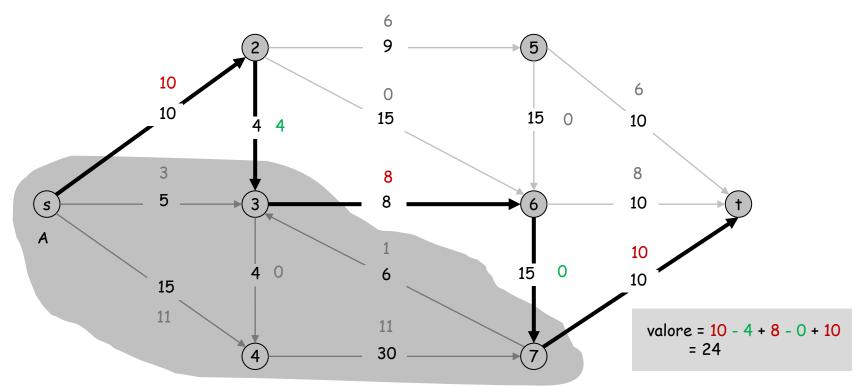




Lemma del valore del flusso. Sia f un flusso e sia (A, B) un taglio s-t. Allora, il flusso netto inviato attraverso il taglio è uguale alla quantità che lascia s.



Lemma del valore del flusso. Sia f un flusso e sia (A, B) un taglio s-t. Allora, il flusso netto inviato attraverso il taglio è uguale alla quantità che lascia s.



Lemma del valore del flusso. Sia f un flusso e sia (A, B) un taglio s-t.

Allora
$$\sum_{e \text{ out of } A} f(e) - \sum_{e \text{ in to } A} f(e) = v(f).$$

Dim.

$$v(f) = \sum_{e \text{ out of } s} f(e)$$

$$= \sum_{v \in A} \left(\sum_{e \text{ out of } v} f(e) - \sum_{e \text{ in to } v} f(e) \right)$$

$$= \sum_{e \text{ out of } A} f(e) - \sum_{e \text{ in to } A} f(e).$$

Per la conservazione del flusso, tutti i termini eccetto v = s sono 0. Inoltre il flusso entrante in $s \ge 0$.

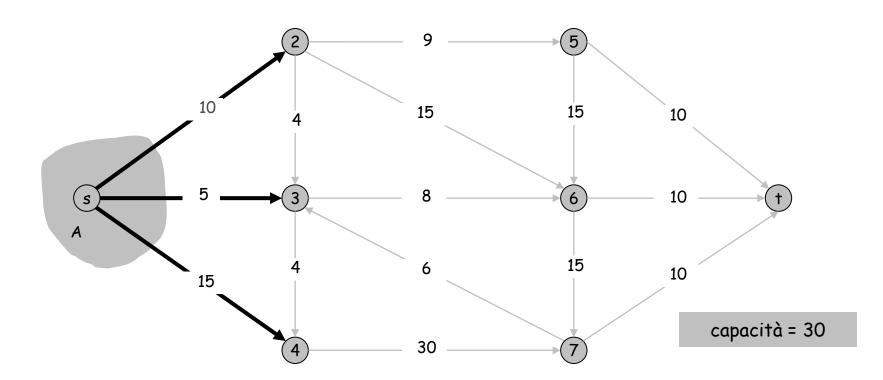
Proprietà di dualità debole (limitazione superiore al flusso).

Sia f un flusso, e sia (A, B) un taglio s-t. Allora

$$v(f) \le cap(A, B)$$
 (ricorda $cap(A,B) = \sum_{e \text{ out of } A} c(e)$)

(il valore del flusso è al più la capacità di un qualsiasi taglio).

capacità taglio = 30 \Rightarrow valore flusso \leq 30



Proprietà di dualità debole.

Sia f un flusso, e sia (A, B) un taglio s-t. Allora $v(f) \le cap(A, B)$.

Dim.

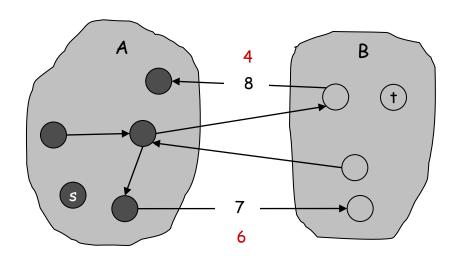
Per il lemma del valore del flusso:

$$v(f) = \sum_{e \text{ out of } A} f(e) - \sum_{e \text{ in to } A} f(e)$$

$$\leq \sum_{e \text{ out of } A} f(e)$$

$$\leq \sum_{e \text{ out of } A} c(e)$$

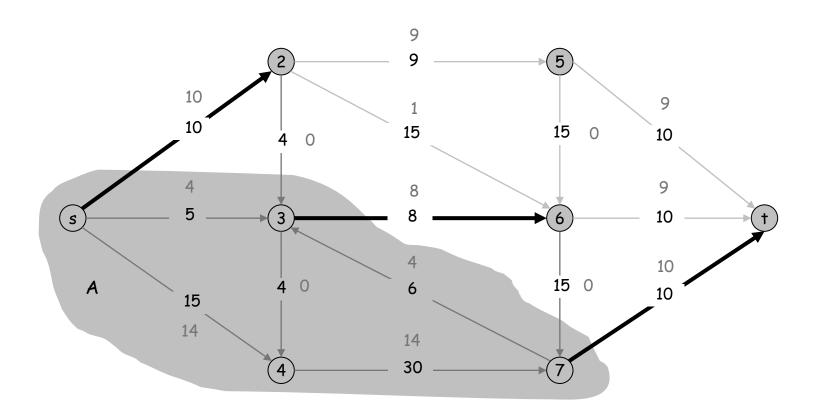
$$= \operatorname{cap}(A,B)$$



Certificato di ottimalità

Corollario Sia f un flusso, e sia (A, B) un taglio. Se v(f) = cap(A, B), allora f è un flusso massimo e (A, B) è un taglio minimo.

valore flusso = 28 capacità taglio = 28 ⇒ valore flusso ≤ 28



Teorema Max-flusso Min-taglio

Teorema del cammino aumentante. Un flusso f è un flusso massimo sse non ci sono cammini aumentanti.

Teorema max-flusso min-taglio. [Ford-Fulkerson 1956] Il valore del flusso massimo è uguale al valore del minimo taglio.

Dim. Proviamo entrambi mostrando che sono equivalenti:

- (i) Esiste un taglio (A, B) tale che v(f) = cap(A, B).
- (ii) fè un flusso massimo.
- (iii) Non ci sono cammini aumentanti nel grafo residuale G_f .
- (i) ⇒ (ii) Questo è il corollario al lemma di dualità debole.
- (ii) ⇒ (iii) Mostriamo per contrapposizione: non (iii) ⇒ non (ii). Sia f un flusso. Se esiste un cammino aumentante, allora possiamo migliorare f mandando delle unità lungo quel cammino. Quello che ne risulta è ancora un flusso: valgono le proprietà di capacità e conservazione.

Prova del Teorema Max-flusso Min-taglio

(iii) \Rightarrow (i): Non ci sono cammini aumentanti relativi ad $f \Rightarrow$ Esiste un taglio (A, B) tale che v(f) = cap(A, B).

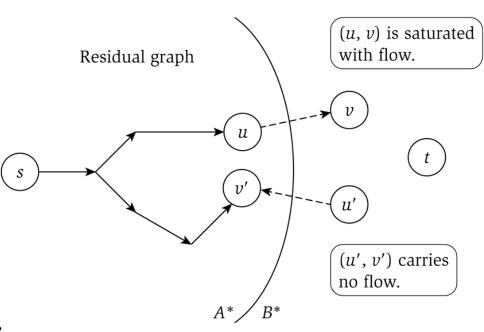
- Sia f un flusso senza cammini aumentanti.
- Sia A* l'insieme dei vertici raggiungibili da s nel grafo residuale e B* tutti gli altri.
- Per definizione di A^* , $s \in A^*$.
- Per l'ipotesi (iii), t ∉ A*.

$$v(f) = \sum_{e \text{ out of } A^*} f(e) - \sum_{e \text{ into } A^*} f(e)$$

Quanto vale f(e)?

Per archi uscenti da A^* : sia (u,v) tale che u $\in A^*$ e v $\in B^*$. Allora f(e) = c(e).

Se fosse f(e) < c(e) allora ci sarebbe un arco (u,v) nel grafo residuale e quindi $v \in A^*$.



Prova del Teorema Max-flusso Min-taglio

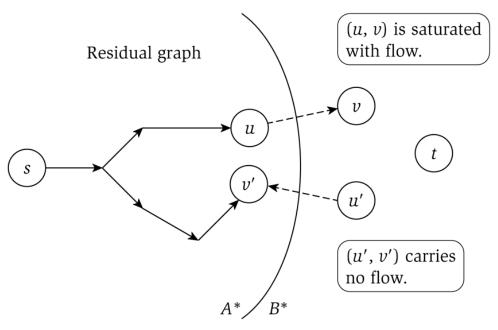
(iii) \Rightarrow (i): Non ci sono cammini aumentanti relativi ad f \Rightarrow Esiste un taglio (A, B) tale che v(f) = cap(A, B).

- Sia f un flusso senza cammini aumentanti.
- Sia A* l'insieme dei vertici raggiungibili da s nel grafo residuale e B* tutti gli altri.
- Per definizione di A^* , $s \in A^*$.
- Per l'ipotesi (iii), t ∉ A*.

$$v(f) = \sum_{e \text{ out of } A^*} f(e) - \sum_{e \text{ into } A^*} f(e)$$
quanto vale f(e)?

Per archi entranti in A^* : sia (u',v') tale che u' $\in B^*$ e v' $\in A^*$. Allora f(e) = 0.

Se fosse f(e) > 0 allora ci sarebbe un arco (v',u') nel grafo residuale e quindi $u' \in A^*$.

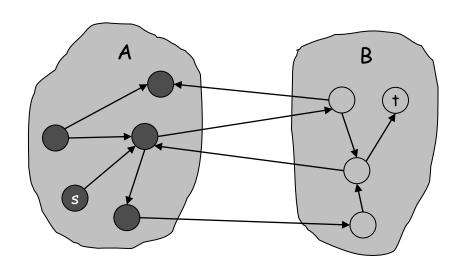


Prova del Teorema Max-flusso Min-taglio

(iii) \Rightarrow (i): Non ci sono cammini aumentanti relativi ad $f \Rightarrow$ Esiste un taglio (A, B) tale che v(f) = cap(A, B).

- Sia f un flusso senza cammini aumentanti.
- Sia A* l'insieme dei vertici raggiungibili da s nel grafo residuale.
- Per definizione di A^* , $s \in A^*$.
- Per l'ipotesi (iii), t ∉ A.

$$v(f) = \sum_{e \text{ out of } A} f(e) - \sum_{e \text{ in to } A} f(e)$$
$$= \sum_{e \text{ out of } A} c(e) - 0$$
$$= cap(A,B)$$



original network

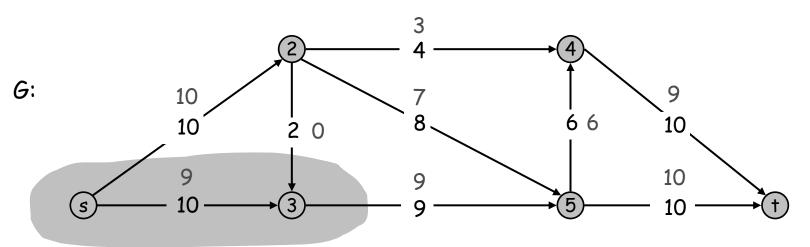
Trovare taglio minimo

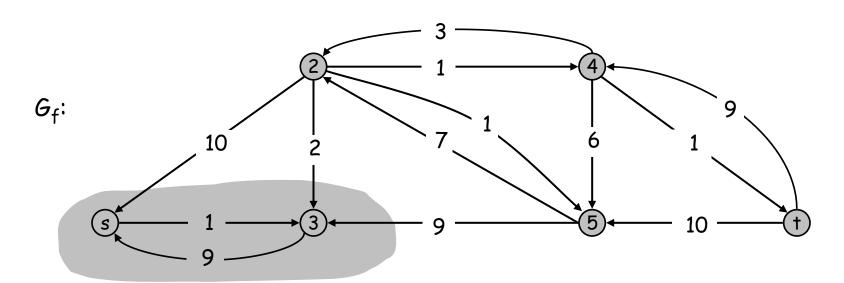
L'algoritmo di Ford-Fulkerson può essere usato anche per calcolare un taglio minimo in una rete di flusso:

- Eseguire l'algoritmo di Ford-Fulkerson
- Al termine considerare G_f e determinare l'insieme A^* dei vertici raggiungibili da s con una visita BFS o DFS.
- Restituire il taglio (A*, V\A*)

Correttezza: Prova del Teorema Max-flusso Min-taglio

Calcolo del taglio minimo





 $A*=\{s, 3\} e B*=V A*$

Cap
$$(A^*, B^*) = 19 = v(f)$$

Analisi dell'algoritmo di Ford-Fulkerson

Limitazione superiore al valore del flusso: $C = \sum_{e \text{ esce da } s} c(e)$

Infatti
$$v(f) = \sum_{e \text{ esce da } s} f(e) \le \sum_{e \text{ esce da } s} c(e) = C$$

Assunzione. Tutte le capacità sono interi fra 1 e C.

Invariante. Ogni valore del flusso f(e) e ogni capacità residuale $c_f(e)$ restano interi durante l'esecuzione dell'algoritmo.

Teorema. L'algoritmo termina in al più $v(f^*) \le C$ iterazioni ($f^*=\max flusso$).

Prova.

Ogni cammino aumentante P incrementa il valore del flusso di almeno 1.

Il flusso aumenta perché il primo arco di P in G_f esce da s e P non ritorna in s; siccome non ci sono archi entranti in s in G il primo arco di P è in avanti.

Più precisamente il flusso aumenta ad ogni iterazione di b = bootleneck (P,f).

Osservazione: Se le capacità non fossero interi, l'algoritmo potrebbe continuare all'infinito.

Complessità di tempo

Supponiamo che tutti i nodi abbiano almeno un arco incidente, quindi $m \ge n/2$ e O(m+n) = O(m).

Corollario. Complessità tempo di Ford-Fulkerson è O(mC).

Prova.

Al massimo v(f*) ≤ C iterazioni In ogni iterazione:

- \bullet troviamo un cammino aumentante in O(m) mediante BFS o DFS nel grafo residuale.
- il grafo residuale ha ≤ 2m archi
- il grafo residuale rappresentato utilizzando le liste delle adiacenze (in e out)
- Augment (f, c, P) ha complessità O(n) (P ha al più n-1 archi)
- \bullet aggiornamento grafo residuale in O(m) (per ogni arco costruiamo gli archi indietro e avanti opportuni)

Teorema Integralità. Se tutte le capacità sono numeri interi, allora vi è un flusso massimo f per cui ogni valore del flusso f(e) è un intero.

Prova. L'algoritmo termina, quindi il teorema segue dall'invariante.

L'algoritmo di Ford-Fulkerson è pseudo-polinomiale

D. L'algoritmo di Ford-Fulkerson è polinomiale nella taglia dell'input?

R. No: l'algoritmo può fare anche C iterazioni, a seconda della scelta del cammino aumentante e quindi un numero esponenziale ($C = 2^{\log C}$)

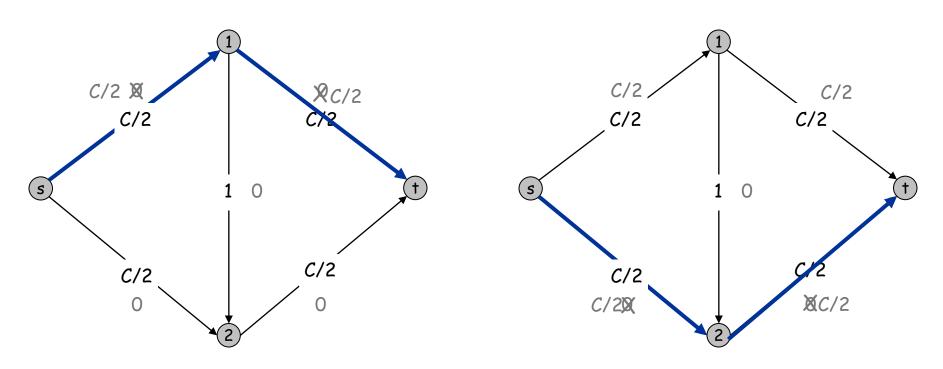
Esempio: prima scelta dei cammini

Esempio: massimo flusso = C con f((1,2))=0 e f(e)=C/2 per gli altri

Calcolabile in 2 iterazioni dell'algoritmo di Ford-Fulkerson scegliendo

$$P_1 = s - 1 - t$$

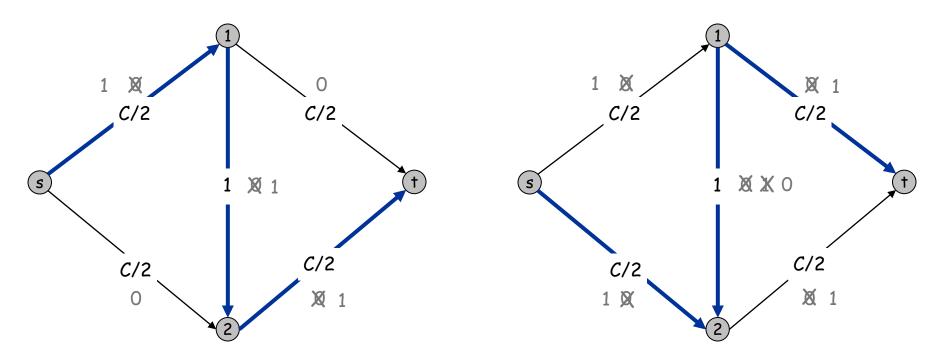
$$P_2 = s - 2 - t$$



Esempio: seconda scelta dei cammini

Esempio: massimo flusso = C con f((1,2))=0 e f(e)=C/2 per gli altri

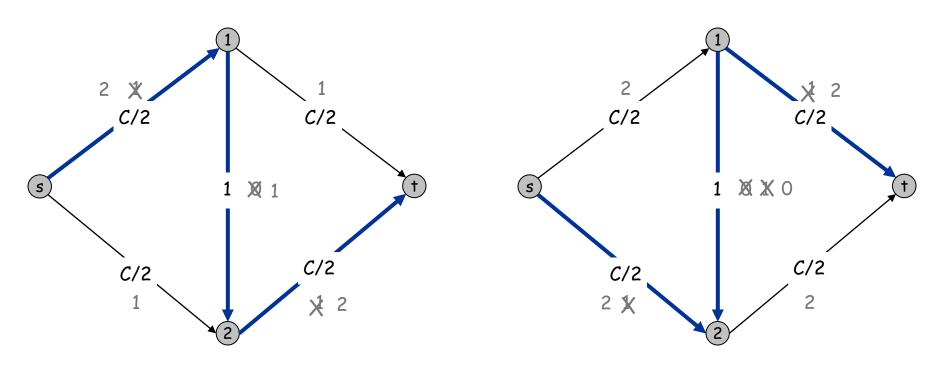
Calcolabile in C iterazioni dell'algoritmo di Ford-Fulkerson scegliendo $P_3 = s-1-2-t$ e $P_4 = s-2-1-t$ alternativamente per C/2 volte ognuno. In G_f compare (1,2) o (2,1) alternativamente.



Esempio: numero esponenziale di incrementi del flusso

Esempio: massimo flusso =C con f((1,2))=0 e f(e)=C/2 per gli altri

Calcolabile in C iterazioni dell'algoritmo di Ford-Fulkerson scegliendo P_3 =s-1-2-t e P_4 =s-2-1-t alternativamente per C/2 volte ognuno. In G_f compare (1,2) o (2,1) alternativamente.



Scegliere Buoni Cammini Aumentanti

Fare attenzione quando si scelgono i cammini aumentanti.

- Alcune scelte portano ad algoritmi esponenziali.
- Buone scelte portano ad algoritmi polinomiali.
- Se le capacità fossero irrazionali, l'algoritmo potrebbe non terminare!

Obiettivo: scegliere cammini aumentanti in modo tale che:

- Possiamo trovare cammini aumentanti efficientemente.
- Poche iterazioni.

Scegliere cammini aumentanti con: [Edmonds-Karp 1972, Dinitz 1970]

- Massima capacità bottleneck (però può richiedere molto tempo).
- Sufficientemente grande capacità bottleneck. Complessità: $O(m^2 \log_2 C)$

Altro algoritmo che sceglie cammino con minor numero di archi

7.5 Matching Bipartito

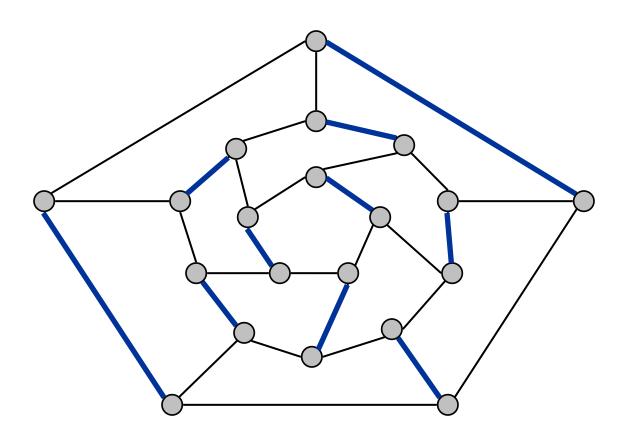
Un'applicazione del calcolo del flusso massimo

Matching

Matching.

- Input: grafo non-orientato G = (V, E).
- $M \subseteq E$ è un matching se ogni nodo appare in al più un arco in M.

Problema del max matching: trovare un matching di cardinalità massima.



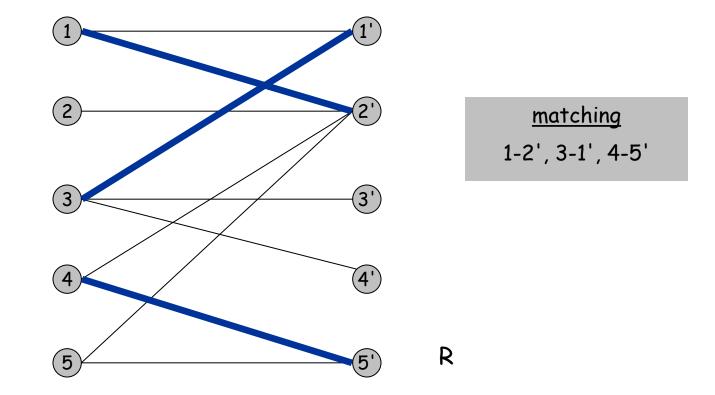
Matching bipartito

Ogni arco ha un estremo in L e l'altro in R

Matching bipartito

- Input: grafo bipartito non orientato $G = (L \cup R, E)$.
- $M \subseteq E$ è un matching se ogni nodo appare in al più un arco in M.

 Problema del max matching: trovare un matching di cardinalità massima.

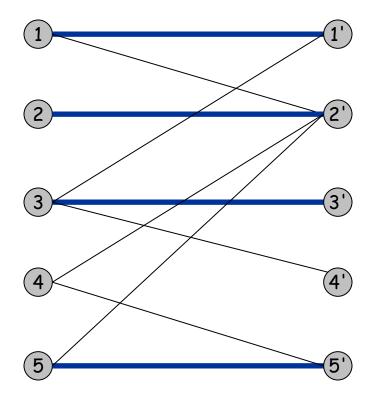


Matching bipartito

Ogni arco ha un estremo in L e l'altro in R

Matching bipartito

- Input: grafo bipartito non orientato $G = (L \cup R, E)$.
- $M \subseteq E$ è un matching se ogni nodo appare in al più un arco in M. Problema del max matching: trovare un matching di cardinalità massima.



max matching

1-1', 2-2', 3-3' 4-4'

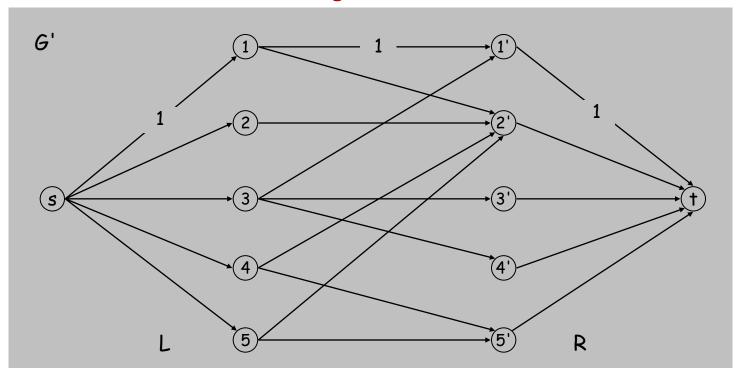
2

Matching bipartito e flusso

Formulazione in termini di flusso massimo.

- Creare un grafo $G' = (L \cup R \cup \{s, t\}, E')$.
- Orientare tutti gli archi da L a R, e assegnare capacità 1.
- Aggiungere sorgente s, e archi di capacità 1 da s ad ogni nodo in L.
- Aggiungere pozzo t, e archi di capacità 1 da ogni nodo in R a t.

La cardinalità massima di un matching in G = valore di massimo flusso in G'.

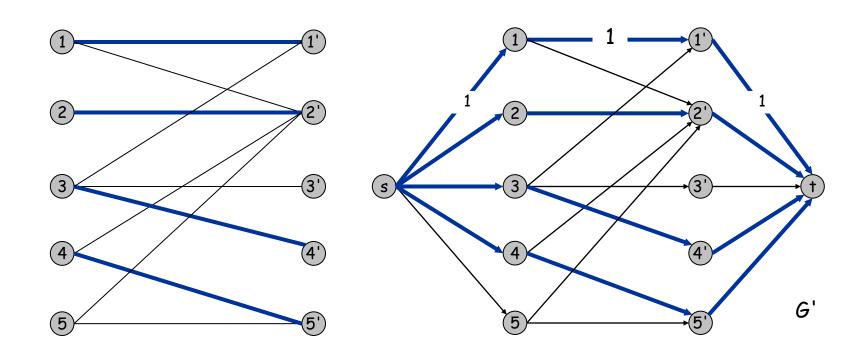


Correttezza

Teorema. La cardinalità massima di un matching in G = valore di massimo flusso in G'.

Dim. ≤

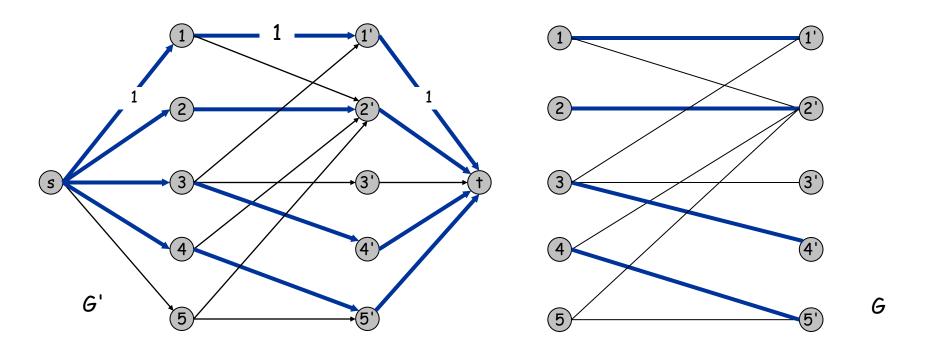
- Dato un matching massimo M di cardinalità k.
- Si consideri il flusso f che invia 1 unità lungo ognuno dei k cammini da s a t che contengono gli archi del matching.
- fè un flusso e ha valore k.



Correttezza

Teorema. La cardinalità massima di un matching in G=valore massimo flusso in G'. Dim. \geq

- Sia f un flusso massimo in G' di valore k.
- Per il teorema di integralità \Rightarrow k è intero e quindi f è 0-1.
- Si consideri M = insieme di archi da L a R con f(e) = 1.
 - Ogni nodo in Le R partecipa in al più 1 arco in M (conservazione)
 - $|\mathbf{M}|$ = k: consider ataglio (L \cup s, R \cup t) (ricorda: $\sum_{e \text{ out of } A} f(e) \sum_{e \text{ in to } A} f(e) = v(f)$.)



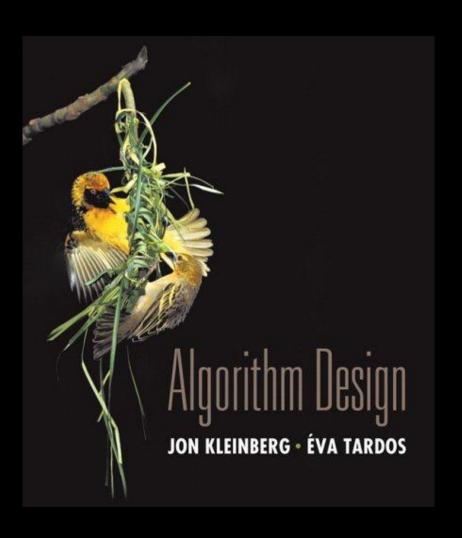
Matching bipartito: complessità di tempo

Quale algoritmo per il flusso massimo usare per il matching bipartito?

- Ford-Fulkerson generico: $O(m \text{ val}(f^*)) = O(mn)$.
- Edmonds-Karp: $O(m^2 \log C) = O(m^2)$.
- Algoritmo col minor numero di archi: $O(m n^{1/2})$.

Matching su grafi non-bipartiti.

- La struttura dei grafi non-bipartiti è più complicata, ma ben nota. [Tutte-Berge, Edmonds-Galai]
- Algoritmo di Blossom : O(n⁴). [Edmonds 1965]
- Migliore al momento: $O(m n^{1/2})$. [Micali-Vazirani 1980]



Chapter 7

Network flow

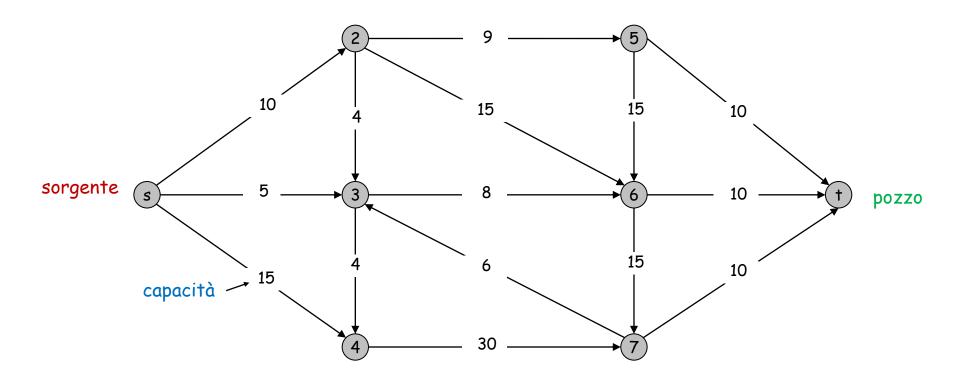
Slides by Kevin Wayne. Copyright © 2005 Pearson-Addison Wesley. All rights reserved. Riprendiamo l'algoritmo di Ford-Fulkerson che risolve il problema del flusso per

- Analizzarne la complessità
- Vederne un'applicazione

Reti di flusso

Astrazione per materiale che "scorre" attraverso gli archi (come liquidi nei tubi). Una rete di flusso è G = (V, E) = grafo orientato con

- due nodi particolari: s = sorgente (senza archi entranti)
 t = pozzo (senza archi uscenti).
- c(e) = capacità dell'arco e.



Flusso

Def. Un flusso s-t è una funzione $f: E \rightarrow R^+$ che soddisfa:

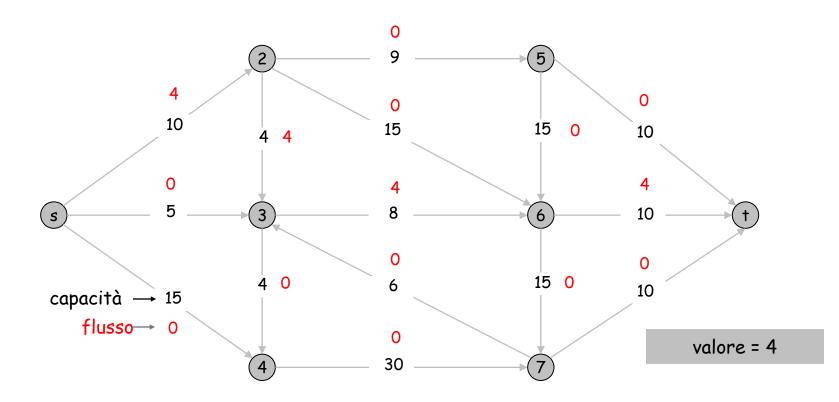
- per ogni $e \in E$: $0 \le f(e) \le c(e)$ (capacità)

- per ogni $v \in V \{s, t\}$: $\sum f(e) = \sum f(e)$ (conservazione)

$$\sum_{e \text{ into } v} f(e) = \sum_{e \text{ out of } v} f(e)$$

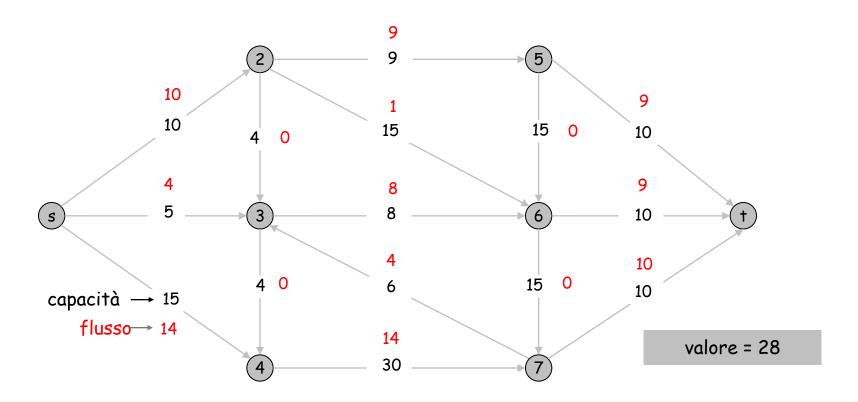
Def. Il valore del flusso f è: $v(f) = \sum f(e)$.

$$v(f) = \sum_{e \text{ out of } s} f(e)$$
.



Problema del massimo flusso

Problema del massimo flusso. Trovare il flusso s-t di massimo valore.



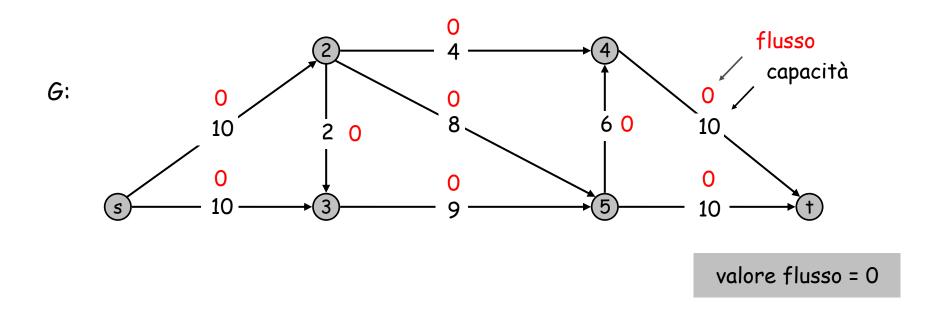
Algoritmo del cammino aumentante

Sia P un cammino semplice s-t in G_f

```
Augment(f, c, P) {
   b ← bottleneck(P,f)
   foreach e ∈ P {
    if (e ∈ E) in G: f(e) ← f(e) + b Arco in avanti
    else in G: f(e<sup>R</sup>) ← f(e) - b
}
return f
}
```

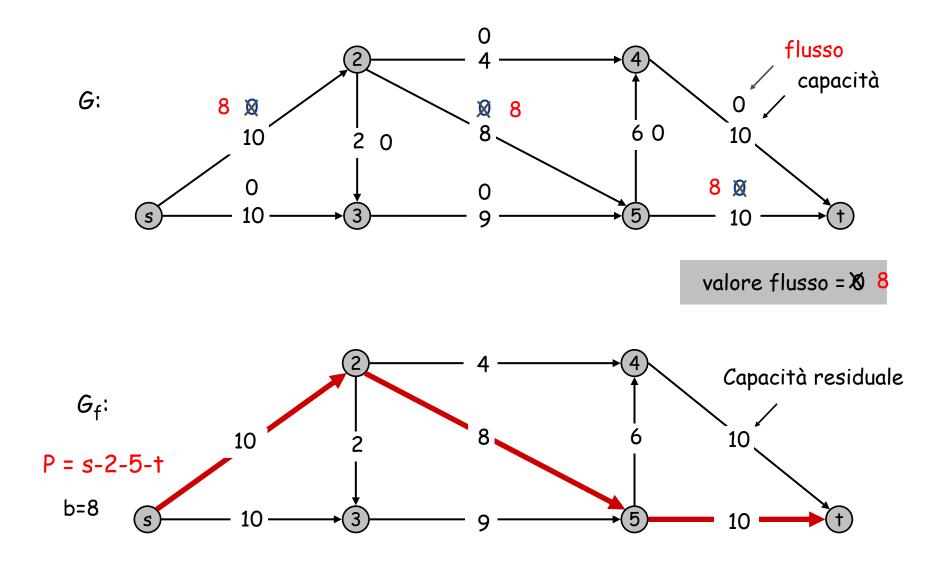
```
\label{eq:ford-Fulkerson} \begin{split} &\text{Ford-Fulkerson}(G,\ s,\ t,\ c)\ \{\\ &\text{foreach}\ e\in E\ f(e)\leftarrow 0\\ &G_f\leftarrow \text{grafo residuale} \end{split} \label{eq:while} \begin{aligned} &\text{while}\ (\text{esiste un cammino aumentante P in }G_f)\ \{\\ &f\leftarrow \text{Augment}(f,\ c,\ P)\\ &\text{aggiorna}\ G_f\\ &\}\\ &\text{return f} \\ \end{aligned}
```

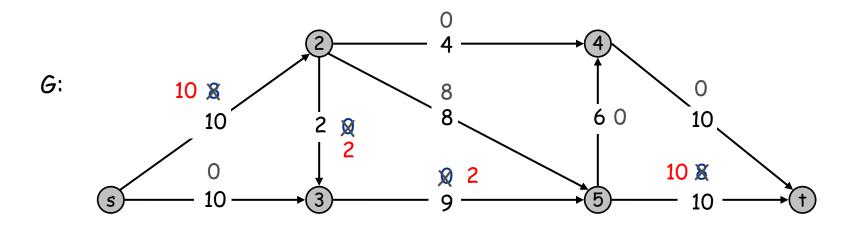
Esempio esecuzione algoritmo di Ford-Fulkerson



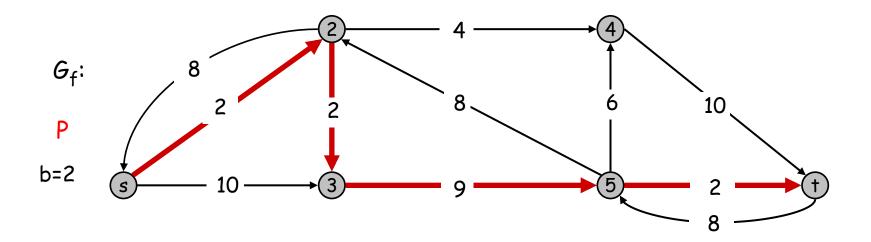
Rivediamo l'esempio per capire quale può essere la complessità di tempo; in particolare:

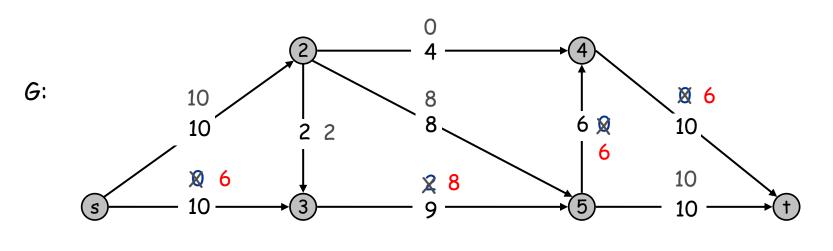
Come varia il valore del flusso ad ogni iterazione? Quante iterazioni ci sono?



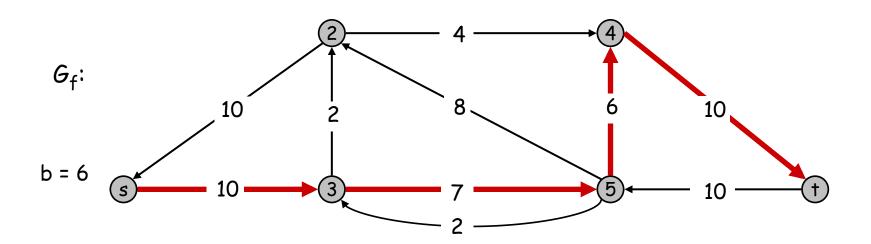


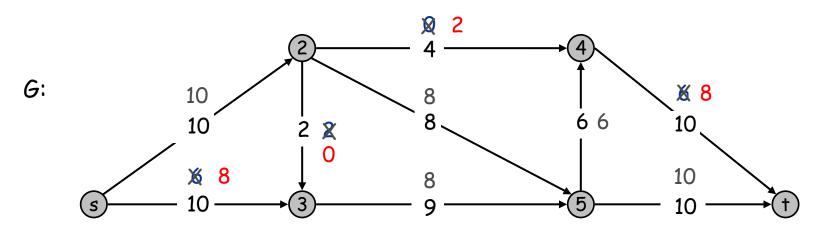
valore flusso = **%** 10



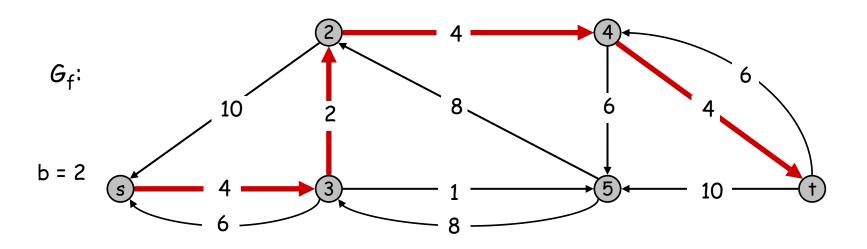


valore flusso = 10 16

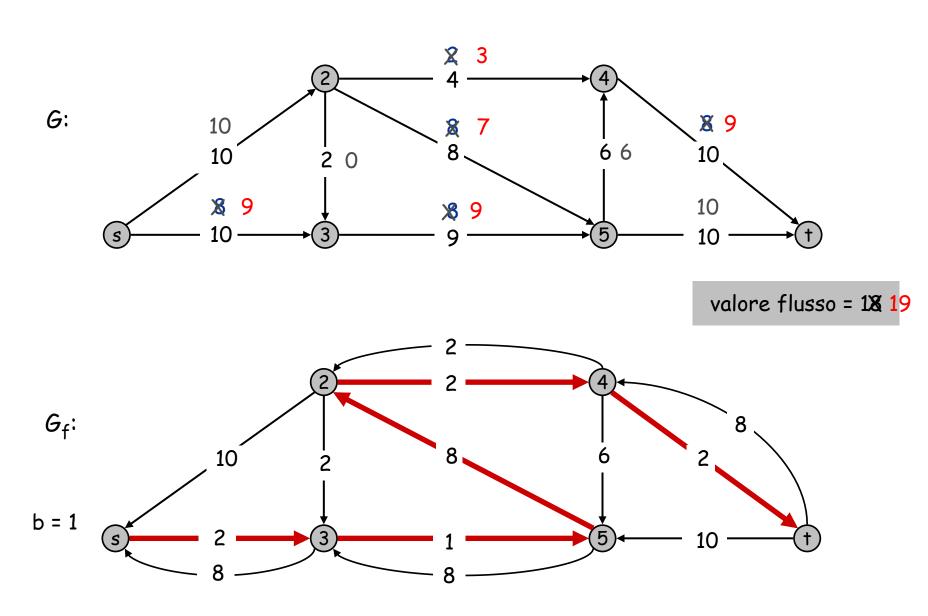


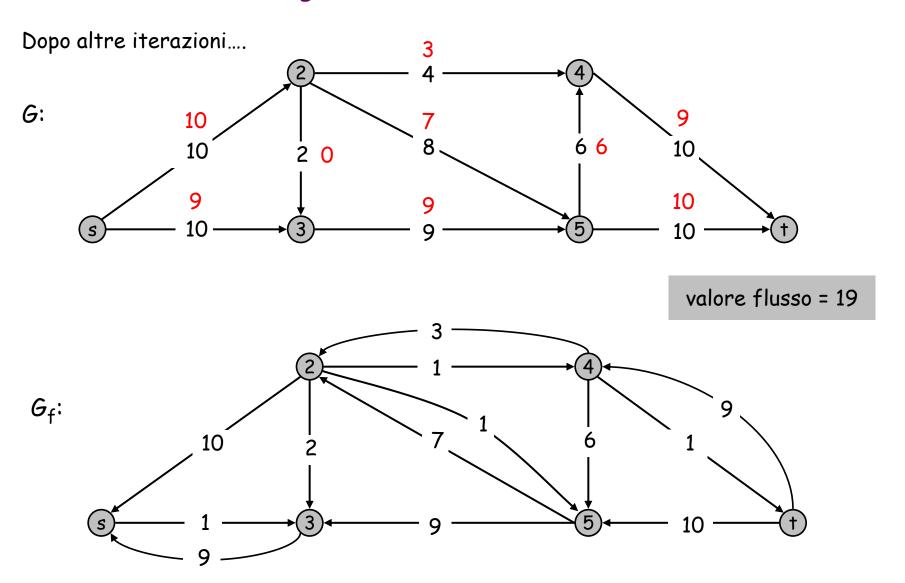


valore flusso = 1618



Nota: l'arco (3,2) in G_f è un arco indietro: (2,3) è in G_f quindi $f((2,3)) \leftarrow f((2,3)) - b$





Non ci sono più cammini aumentanti P in G_f : l'algoritmo termina.

Teorema Max-flusso Min-taglio

Teorema del cammino aumentante. Un flusso f è un flusso massimo sse non ci sono cammini aumentanti.

Teorema max-flusso min-taglio. [Ford-Fulkerson 1956] Il valore del flusso massimo è uguale al valore del minimo taglio.

Dim. Proviamo entrambi mostrando che sono equivalenti:

- (i) Esiste un taglio (A, B) tale che v(f) = cap(A, B).
- (ii) fè un flusso massimo.
- (iii) Non ci sono cammini aumentanti nel grafo residuale G_f .
- (i) ⇒ (ii) Questo è il corollario al lemma di dualità debole.
- (ii) ⇒ (iii) Mostriamo per contrapposizione: non (iii) ⇒ non (ii). Sia f un flusso. Se esiste un cammino aumentante, allora possiamo migliorare f mandando delle unità lungo quel cammino. Quello che ne risulta è ancora un flusso: valgono le proprietà di capacità e conservazione.

Analisi dell'algoritmo di Ford-Fulkerson

Limitazione superiore al valore del flusso: $C = \sum_{e \text{ esce da } s} c(e)$

Infatti
$$v(f) = \sum_{e \text{ esce da } s} f(e) \le \sum_{e \text{ esce da } s} c(e) = C$$

Assunzione. Tutte le capacità sono interi fra 1 e C.

Invariante. Ogni valore del flusso f(e) e ogni capacità residuale $c_f(e)$ restano interi durante l'esecuzione dell'algoritmo.

Teorema. L'algoritmo termina in al più $v(f^*) \le C$ iterazioni ($f^*=\max flusso$).

Prova.

Ogni cammino aumentante P incrementa il valore del flusso di almeno 1.

Infatti il flusso aumenta perché il primo arco di P in G_f esce da s e P non ritorna in s; siccome non ci sono archi entranti in s in G il primo arco di P è in avanti. Più precisamente il flusso aumenta ad ogni iterazione di b = bootleneck (P, f).

Osservazione: Se le capacità non fossero interi, l'algoritmo potrebbe continuare all'infinito.

Complessità di tempo

Supponiamo che tutti i nodi abbiano almeno un arco incidente, quindi $m \ge n/2$ e O(m+n) = O(m).

Corollario. Complessità tempo di Ford-Fulkerson è O(mC).

Prova.

Al massimo v(f*) ≤ C iterazioni In ogni iterazione:

- \bullet troviamo un cammino aumentante in O(m) mediante BFS o DFS nel grafo residuale.
- il grafo residuale ha ≤ 2m archi
- il grafo residuale rappresentato utilizzando le liste delle adiacenze (in e out)
- Augment (f, c, P) ha complessità O(n) (P ha al più n-1 archi)
- \bullet aggiornamento grafo residuale in O(m) (per ogni arco costruiamo gli archi indietro e avanti opportuni)

Teorema Integralità. Se tutte le capacità sono numeri interi, allora vi è un flusso massimo f per cui ogni valore del flusso f(e) è un intero.

Prova. L'algoritmo termina, quindi il teorema segue dall'invariante.

L'algoritmo di Ford-Fulkerson è pseudo-polinomiale

Complessità di tempo di Ford-Fulkerson è O(mC).

Quando C non è molto grande, questa è una limitazione accettabile. Ma non lo è più se C è grande e la taglia diventa: m, n, e $log\ C$.

D. L'algoritmo di Ford-Fulkerson è polinomiale nella taglia dell'input?

m. n. e log C

R. No: l'algoritmo può fare anche C iterazioni, a seconda della scelta del cammino aumentante e quindi un numero esponenziale ($C = 2^{\log C}$).

Vediamone un esempio.

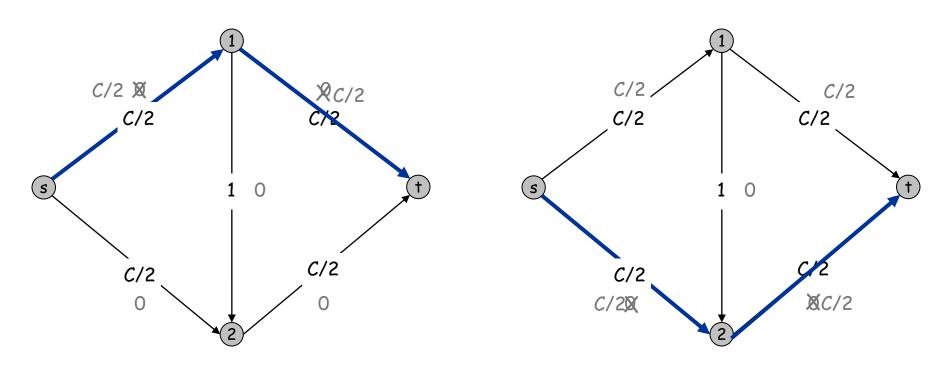
Esempio: prima scelta dei cammini

Esempio: massimo flusso = C con f((1,2))=0 e f(e)=C/2 per gli altri

Calcolabile in 2 iterazioni dell'algoritmo di Ford-Fulkerson scegliendo

$$P_1 = s - 1 - t$$

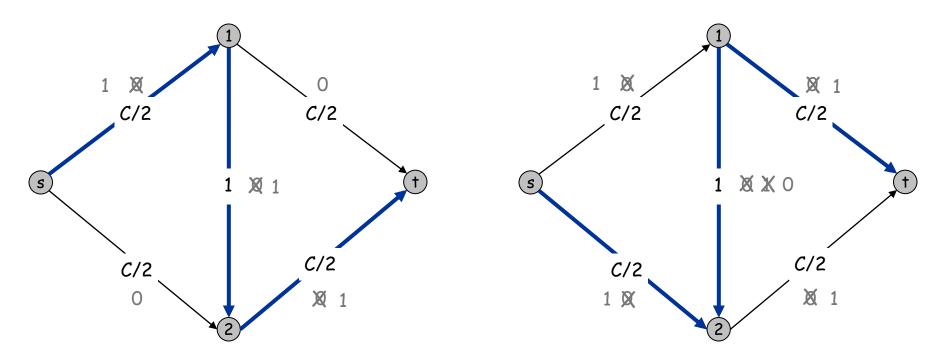
$$P_2 = s - 2 - t$$



Esempio: seconda scelta dei cammini

Esempio: massimo flusso = C con f((1,2))=0 e f(e)=C/2 per gli altri

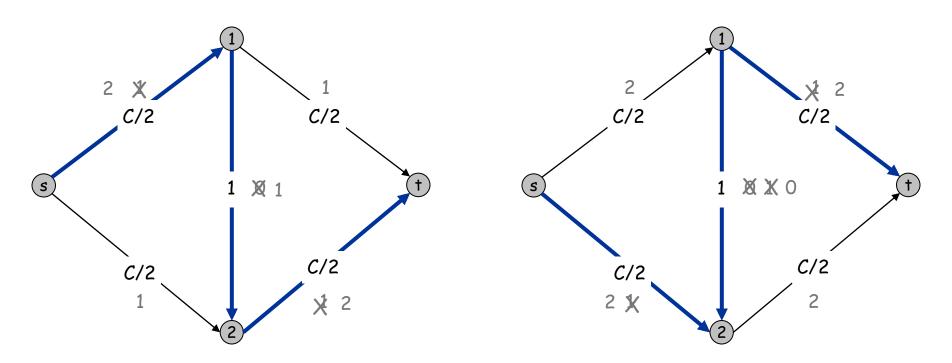
Calcolabile in C iterazioni dell'algoritmo di Ford-Fulkerson scegliendo P_3 =s-1-2-t e P_4 =s-2-1-t alternativamente per C/2 volte ognuno. In G_f compare (1,2) o (2,1) alternativamente.



Esempio: numero esponenziale di incrementi del flusso

Esempio: massimo flusso =C con f((1,2))=0 e f(e)=C/2 per gli altri

Calcolabile in C iterazioni dell'algoritmo di Ford-Fulkerson scegliendo P_3 =s-1-2-t e P_4 =s-2-1-t alternativamente per C/2 volte ognuno. In G_f compare (1,2) o (2,1) alternativamente.



Scegliere Buoni Cammini Aumentanti

Fare attenzione quando si scelgono i cammini aumentanti.

- Alcune scelte portano ad algoritmi esponenziali.
- Buone scelte portano ad algoritmi polinomiali.
- Se le capacità fossero irrazionali, l'algoritmo potrebbe non terminare!

Obiettivo: scegliere cammini aumentanti in modo tale che:

- · Possiamo trovare cammini aumentanti efficientemente.
- Poche iterazioni.

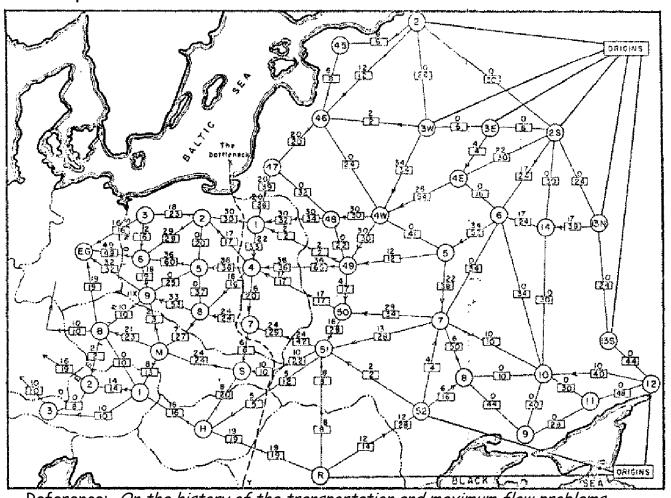
Scegliere cammini aumentanti: [Edmonds-Karp 1972, Dinitz 1970]

- Massima capacità bottleneck (però può richiedere molto tempo).
- Sufficientemente grande capacità bottleneck.
 Complessità: O(m² log 2C) [Edmonds-Karp 1972, Dinitz 1970]

Altro algoritmo che sceglie cammino con minor numero di archi

Soviet Rail Network, 1955

È interessante notare che storicamente il problema del flusso massimo fu introdotto durante la Guerra Fredda per risolvere quello del minimo taglio. Più precisamente, si intendeva determinare il minimo numero di "tagli da effettuare" (mediante bombardamenti...) alla rete ferroviaria sovietica per sconnettere Mosca dal resto dell'URSS.



Reference: On the history of the transportation and maximum flow problems. Alexander Schrijver in Math Programming, 91: 3, 2002.

7.5 Matching Bipartito

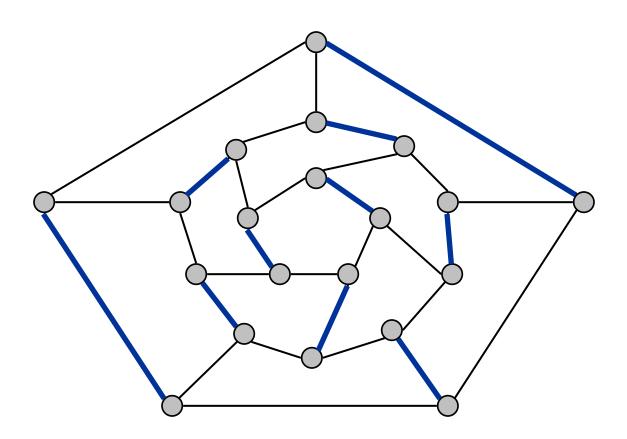
Un'applicazione del calcolo del flusso massimo

Matching

Matching.

- Input: grafo non-orientato G = (V, E).
- $M \subseteq E$ è un matching se ogni nodo appare in al più un arco in M.

Problema del max matching: trovare un matching di cardinalità massima.



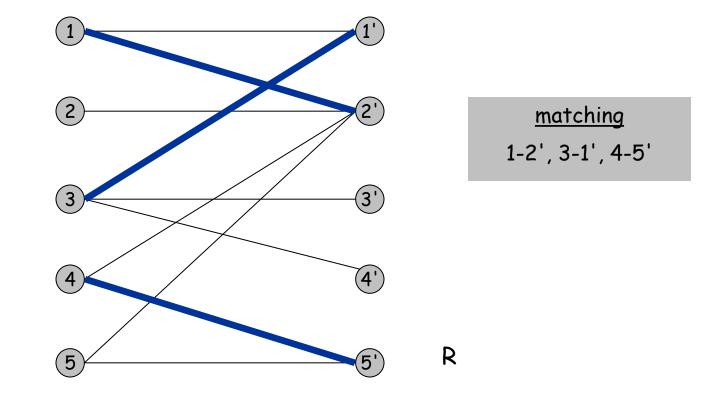
Matching bipartito

Ogni arco ha un estremo in L e l'altro in R

Matching bipartito

- Input: grafo bipartito non orientato $G = (L \cup R, E)$.
- $M \subseteq E$ è un matching se ogni nodo appare in al più un arco in M.

 Problema del max matching: trovare un matching di cardinalità massima.

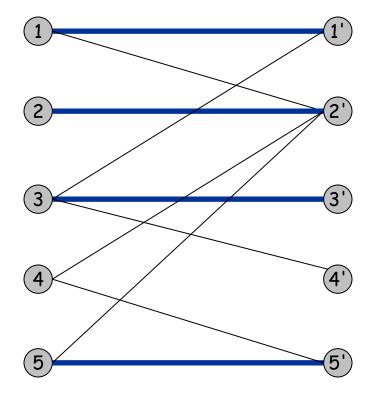


Matching bipartito

Ogni arco ha un estremo in L e l'altro in R

Matching bipartito

- Input: grafo bipartito non orientato $G = (L \cup R, E)$.
- $M \subseteq E$ è un matching se ogni nodo appare in al più un arco in M. Problema del max matching: trovare un matching di cardinalità massima.



max matching

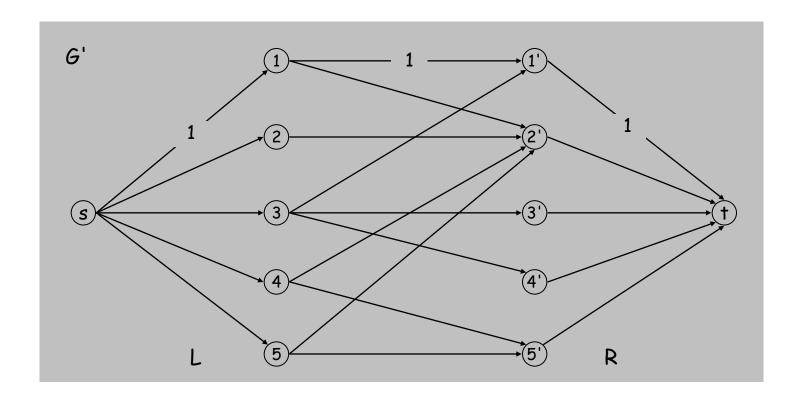
1-1', 2-2', 3-3' 4-4'

?

Matching bipartito e flusso

Formulazione in termini di flusso massimo.

- Creare un grafo $G' = (L \cup R \cup \{s, t\}, E')$.
- Orientare tutti gli archi da L a R, e assegnare capacità 1.
- Aggiungere sorgente s, e archi di capacità 1 da s ad ogni nodo in L.
- Aggiungere pozzo t, e archi di capacità 1 da ogni nodo in R a t.
- La cardinalità massima di un matching in G = valore di massimo flusso in G'.

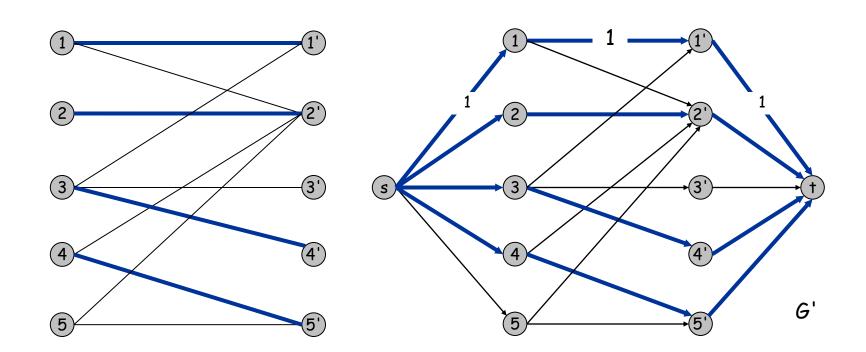


Correttezza

Teorema. La cardinalità massima di un matching in G = valore di massimo flusso in G'.

Dim. ≤

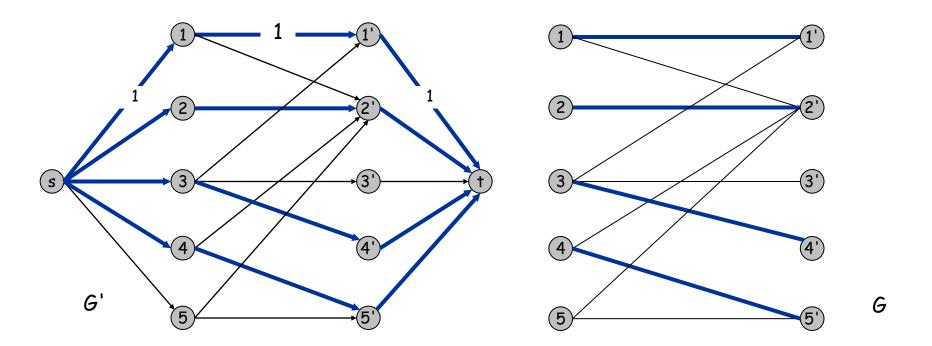
- Dato un matching massimo M di cardinalità k.
- Si consideri il flusso f che invia 1 unità lungo ognuno dei k cammini da s a t che contengono gli archi del matching.
- fè un flusso e ha valore k.



Correttezza

Teorema. La cardinalità massima di un matching in G=valore massimo flusso in G'. Dim. \geq

- Sia f un flusso massimo in G' di valore k.
- Per il teorema di integralità \Rightarrow k è intero e quindi f è 0-1.
- Si consideri M = insieme di archi da L a R con f(e) = 1.
 - Ogni nodo in Le R partecipa in al più 1 arco in M (conservazione)
 - $|\mathbf{M}|$ = k: consider ataglio (L \cup s, R \cup t) (ricorda: $\sum_{e \text{ out of } A} f(e) \sum_{e \text{ in to } A} f(e) = v(f)$.)



Matching bipartito: complessità di tempo

Il tempo è dominato dalla ricerca del massimo flusso. In questo caso C = n (ogni arco uscente da s ha capacità 1).

Quale algoritmo per il flusso massimo usare per il matching bipartito?

- Ford-Fulkerson generico: $O(m \text{ val}(f^*)) = O(mC) = O(mn)$.
- Edmonds-Karp: $O(m^2 \log C) = O(m^2 \log n)$.
- Algoritmo col minor numero di archi: $O(m n^{1/2})$.

Matching su grafi non-bipartiti.

- La struttura dei grafi non-bipartiti è più complicata, ma ben nota. [Tutte-Berge, Edmonds-Galai]
- Algoritmo di Blossom : O(n⁴). [Edmonds 1965]
- Migliore al momento: $O(m n^{1/2})$. [Micali-Vazirani 1980]

FINE