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Overview

"Stephen Rago's update is a long overdue benefit to the community of professionals using the versatile family of UNIX and UNIX-like
operating environments. It removes obsolescence and includes newer developments. It also thoroughly updates the context of all
topics, examples, and applications to recent releases of popular implementations of UNIX and UNIX-like environments. And yet, it
does all this while retaining the style and taste of the original classic."--Mukesh Kacker, cofounder and former CTO of Pronto
Networks, Inc."One of the essential classics of UNIX programming."--Eric S. Raymond, author of The Art of UNIX Programming"This
is the definitive reference book for any serious or professional UNIX systems programmer. Rago has updated and extended the
classic Stevens text while keeping true to the original. The APIs are illuminated by clear examples of their use. He also mentions many
of the pitfalls to look out for when programming across different UNIX system implementations and points out how to avoid these
pitfalls using relevant standards such as POSIX 1003.1, 2004 edition and the Single UNIX Specification, Version 3."--Andrew Josey,
Director, Certification, The Open Group, and Chair of the POSIX 1003.1 Working Group"Advanced Programming in the UNIX®
Environment, Second Edition, is an essential reference for anyone writing programs for a UNIX system. It's the first book | turn to when
| want to understand or re-learn any of the various system interfaces. Stephen Rago has successfully revised this book to incorporate
newer operating systems such as GNU/Linux and Apple's OS X while keeping true to the first edition in terms of both readability and
usefulness. It will always have a place right next to my computer."--Dr. Benjamin Kuperman, Swarthmore CollegePraise for the First
Edition"Advanced Programming in the UNIX® Environment is a must-have for any serious C programmer who works under UNIX. Its
depth, thoroughness, and clarity of explana-tion are unmatched."--UniForum Monthly"Numerous readers recommended Advanced
Programming in the UNIX® Environment by W. Richard Stevens (Addison-Wesley), and I'm glad they did; | hadn't even heard of this
book, and it's been out since 1992. | just got my hands on a copy, and the first few chapters have been fascinating."--Open Systems
Today"A much more readable and detailed treatment of UNIX internals can be found in Advanced Programming in the UNIX®
Environment by W. Richard Stevens (Addison-Wesley). This book includes lots of realistic examples, and | find it quite helpful when |
have systems programming tasks to do."--RS/Magazine"This is the definitive reference book for any serious or professional UNIX
systems programmer. Rago has updated and extended the original Stevens classic while keeping true to the original."--Andrew Josey,
Director, Certification, The Open Group, and Chair of the POSIX 1003.1 Working GroupFor over a decade, serious C programmers
have relied on one book for practical, in-depth knowledge of the programming interfaces that drive the UNIX and Linux kernels: W.
Richard Stevens' Advanced Programming in the UNIX® Environment. Now, Stevens' colleague Stephen Rago has thoroughly updated
this classic to reflect the latest technical advances and add support for today's leading UNIX and Linux platforms.Rago carefully
retains the spirit and approach that made this book a classic. Building on Stevens' work, he begins with basic topics such as files,
directories, and processes, carefully laying the groundwork for understanding more advanced techniques, such as signal handling and
terminal 1/0.Substantial new material includes chapters on threads and multithreaded programming, using the socket interface to drive
interprocess communication (IPC), and extensive coverage of the interfaces added to the latest version of the POSIX.1 standard.
Nearly all examples have been tested on four of today's most widely used UNIX/Linux platforms: FreeBSD 5.2.1; the Linux 2.4.22
kernel; Solaris 9; and Darwin 7.4.0, the FreeBSD/Mach hybrid underlying Apple's Mac OS X 10.3.As in the first edition, you'll learn
through example, including more than 10,000 lines of downloadable, ANSI C source code. More than 400 system calls and functions
are demonstrated with concise, complete programs that clearly illustrate their usage, arguments, and return values. To tie together
what you've learned, the book presents several chapter-length case studies, each fully updated for contemporary
environments.Advanced Programming in the UNIX® Environment has helped a generation of programmers write code with exceptional



power, performance, and reliability. Now updated for today's UNIX/Linux systems, this second edition will be even more indispensable.
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Praise for Advanced Programming in the
UNIX® Environment, Second Edition

"Stephen Rago's update is a long overdue benefit to the community of professionals using the
versatile family of UNIX and UNIX-like operating environments. It removes obsolescence and
includes newer developments. It also thoroughly updates the context of all topics, examples,
and applications to recent releases of popular implementations of UNIX and UNIX-like
environments. And yet, it does all this while retaining the style and taste of the original classic."

Mukesh Kacker, cofounder and former CTO of Pronto Networks, Inc.
"One of the essential classics of UNIX programming.”
Eric S. Raymond, author of The Art of UNIX Programming

"This is the definitive reference book for any serious or professional UNIX systems programmer.
Rago has updated and extended the classic Stevens text while keeping true to the original. The
APls are illuminated by clear examples of their use. He also mentions many of the pitfalls to
look out for when programming across different UNIX system implementations and points out
how to avoid these pitfalls using relevant standards such as POSIX 1003.1, 2004 edition and the
Single UNIX Specification, Version 3."

Andrew Josey, Director, Certification, The Open Group, and Chair of the POSIX 1003.1 Working
Group

"Advanced Programming in the UNIX® Environment, Second Edition, is an essential reference
for anyone writing programs for a UNIX system. It's the first book I turn to when | want to
understand or re-learn any of the various system interfaces. Stephen Rago has successfully
revised this book to incorporate newer operating systems such as GNU/Linux and Apple's OS X
while keeping true to the first edition in terms of both readability and usefulness. It will always
have a place right next to my computer."

Dr. Benjamin Kuperman, Swarthmore College
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Praise for the First Edition

"Advanced Programming in the UNIX® Environment is a must-have for any serious C
programmer who works under UNIX. Its depth, thoroughness, and clarity of explanation are
unmatched."

UniForum Monthly

"Numerous readers recommended Advanced Programming in the UNIX® Environment by W.
Richard Stevens (Addison-Wesley), and I'm glad they did; | hadn't even heard of this book, and
it's been out since 1992. | just got my hands on a copy, and the first few chapters have been
fascinating.”

Open Systems Today

"A much more readable and detailed treatment of [UNIX internals] can be found in Advanced
Programming in the UNIX® Environment by W. Richard Stevens (Addison-Wesley). This book
includes lots of realistic examples, and | find it quite helpful when I have systems programming
tasks to do."

RS/Magazine
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Foreword

At some point during nearly every interview | give, as well as in question periods after talks, | get
asked some variant of the same question: "Did you expect Unix to last for so long?" And of course
the answer is always the same: No, we didn't quite anticipate what has happened. Even the
observation that the system, in some form, has been around for well more than half the lifetime of
the commercial computing industry is now dated.

The course of developments has been turbulent and complicated. Computer technology has changed
greatly since the early 1970s, most notably in universal networking, ubiquitous graphics, and readily
available personal computing, but the system has somehow managed to accommodate all of these
phenomena. The commercial environment, although today dominated on the desktop by Microsoft
and Intel, has in some ways moved from single-supplier to multiple sources and, in recent years, to
increasing reliance on public standards and on freely available source.

Fortunately, Unix, considered as a phenomenon and not just a brand, has been able to move with
and even lead this wave. AT&T in the 1970s and 1980s was protective of the actual Unix source code,
but encouraged standardization efforts based on the system's interfaces and languages. For example,
the SVIDthe System V Interface Definitionwas published by AT&T, and it became the basis for the
POSIX work and its follow-ons. As it happened, Unix was able to adapt rather gracefully to a
networked environment and, perhaps less elegantly, but still adequately, to a graphical one. And as it
also happened, the basic Unix kernel interface and many of its characteristic user-level tools were
incorporated into the technological foundations of the open-source movement.

It is important that papers and writings about the Unix system were always encouraged, even while
the software of the system itself was proprietary, for example Maurice Bach's book, The Design of
the Unix Operating System. In fact, | would claim that a central reason for the system's longevity has
been that it has attracted remarkably talented writers to explain its beauties and mysteries. Brian
Kernighan is one of these; Rich Stevens is certainly another. The first edition of this book, along with
his series of books about networking, are rightfully regarded as remarkably well-crafted works of
exposition, and became hugely popular.

However, the first edition of this book was published before Linux and the several open-source
renditions of the Unix interface that stemmed from the Berkeley CSRG became widespread, and also
at a time when many people's networking consisted of a serial modem. Steve Rago has carefully
updated this book to account for the technology changes, as well as developments in various 1SO and
IEEE standards since its first publication. Thus his examples are fresh, and freshly tested.

It's a most worthy second edition of a classic.

Murray Hill, New Dennis Ritchie
Jersey

March 2005
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Introduction

Rich Stevens and | first met through an e-mail exchange when | reported a typographical error in his
first book, UNIX Network Programming. He used to kid me about being the person to send him his
first errata notice for the book. Until his death in 1999, we exchanged e-mail irregularly, usually when
one of us had a question we thought the other might be able to answer. We met for dinner at
USENIX conferences and when Rich was teaching in the area.

Rich Stevens was a friend who always conducted himself as a gentleman. When | wrote UNIX System
V Network Programming in 1993, | intended it to be a System V version of Rich's UNIX Network
Programming. As was his nature, Rich gladly reviewed chapters for me, and treated me not as a
competitor, but as a colleague. We often talked about collaborating on a STREAMS version of his
TCP/IP lllustrated book. Had events been different, we might have actually done it, but since Rich is
no longer with us, revising Advanced Programming in the UNIX Environment is the closest I'll ever
get to writing a book with him.

When the editors at Addison-Wesley told me that they wanted to update Rich's book, | thought that
there wouldn't be too much to change. Even after 13 years, Rich's work still holds up well. But the
UNIX industry is vastly different today from what it was when the book was first published.

e The System V variants are slowly being replaced by Linux. The major system vendors that ship
their hardware with their own versions of the UNIX System have either made Linux ports
available or announced support for Linux. Solaris is perhaps the last descendant of UNIX System
V Release 4 with any appreciable market share.

e After 4.4BSD was released, the Computing Science Research Group (CSRG) from the University
of California at Berkeley decided to put an end to its development of the UNIX operating
system, but several different groups of volunteers still maintain publicly available versions.

e The introduction of Linux, supported by thousands of volunteers, has made it possible for
anyone with a computer to run an operating system similar to the UNIX System, with freely
available source code for the newest hardware devices. The success of Linux is something of a
curiosity, given that several free BSD alternatives are readily available.

e Continuing its trend as an innovative company, Apple Computer abandoned its old Mac
operating system and replaced it with one based on Mach and FreeBSD.

Thus, I've tried to update the information presented in this book to reflect these four platforms.

After Rich wrote Advanced Programming in the UNIX Environment in 1992, | got rid of most of my
UNIX programmer’s manuals. To this day, the two books | keep closest to my desk are a dictionary
and a copy of Advanced Programming in the UNIX Environment. | hope you find this revision equally
useful.
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Changes from the First Edition

Rich's work holds up well. I've tried not to change his original vision for this book, but a lot has
happened in 13 years. This is especially true with the standards that affect the UNIX programming
interface.

Throughout the book, I've updated interfaces that have changed from the ongoing efforts in
standards organizations. This is most noticeable in Chapter 2, since its primary topic is standards.
The 2001 version of the POSIX.1 standard, which we use in this revision, is much more
comprehensive than the 1990 version on which the first edition of this book was based. The 1990 ISO
C standard was updated in 1999, and some changes affect the interfaces in the POSIX.1 standard.

A lot more interfaces are now covered by the POSIX.1 specification. The base specifications of the
Single UNIX Specification (published by The Open Group, formerly X/Open) have been merged with
POSIX.1. POSIX.1 now includes several 1003.1 standards and draft standards that were formerly
published separately.

Accordingly, I've added chapters to cover some new topics. Threads and multithreaded programming
are important concepts because they present a cleaner way for programmers to deal with
concurrency and asynchrony.

The socket interface is now part of POSIX.1. It provides a single interface to interprocess
communication (IPC), regardless of the location of the process, and is a natural extension of the IPC
chapters.

I've omitted most of the real-time interfaces that appear in POSIX.1. These are best treated in a text
devoted to real-time programming. One such book appears in the bibliography.

I've updated the case studies in the last chapters to cover more relevant real-world examples. For
example, few systems these days are connected to a PostScript printer via a serial or parallel port.
Most PostScript printers today are accessed via a network, so I've changed the case study that deals
with PostScript printer communication to take this into account.

The chapter on modem communication is less relevant these days. So that the original material is not
lost, however, it is available on the book's Web site in two formats: PostScript
(http://www.apuebook.com/lostchapter/modem.ps) and PDF
(http://www.apuebook.com/lostchapter/modem.pdf).

The source code for the examples shown in this book is also available at www.apuebook.com. Most of
the examples have been run on four platforms:

1. FreeBSD 5.2.1, a derivative of the 4.4BSD release from the Computer Systems Research Group
at the University of California at Berkeley, running on an Intel Pentium processor

2. Linux 2.4.22 (the Mandrake 9.2 distribution), a free UNIX-like operating system, running on
Intel Pentium processors


http://www.apuebook.com/lostchapter/modem.ps
http://www.apuebook.com/lostchapter/modem.pdf

Solaris 9, a derivative of System V Release 4 from Sun Microsystems, running on a 64-bit
UltraSPARC Ili processor

Darwin 7.4.0, an operating environment based on FreeBSD and Mach, supported by Apple Mac
OS X, version 10.3, on a PowerPC processor

=TT e rrev | nexr



=TeTe e prev | nexr o

Acknowledgments

Rich Stevens wrote the first edition of this book on his own, and it became an instant classic.

I couldn't have updated this book without the support of my family. They put up with piles of papers
scattered about the house (well, more so than usual), my monopolizing most of the computers in the
house, and lots of hours with my face buried behind a computer terminal. My wife, Jeanne, even
helped out by installing Linux for me on one of the test machines.

The technical reviewers suggested many improvements and helped make sure that the content was
accurate. Many thanks to David Bausum, David Boreham, Keith Bostic, Mark Ellis, Phil Howard,
Andrew Josey, Mukesh Kacker, Brian Kernighan, Bengt Kleberg, Ben Kuperman, Eric Raymond, and
Andy Rudoff.

I'd also like to thank Andy Rudoff for answering questions about Solaris and Dennis Ritchie for digging
up old papers and answering history questions. Once again, the staff at Addison-Wesley was great to
work with. Thanks to Tyrrell Albaugh, Mary Franz, John Fuller, Karen Gettman, Jessica Goldstein,
Noreen Regina, and John Wait. My thanks to Evelyn Pyle for the fine job of copyediting.

As Rich did, | also welcome electronic mail from any readers with comments, suggestions, or bug
fixes.

Warren, New Jersey Stephen A. Rago

April 2005 sar@apuebook.com

=TT e rrev | nexr



=TeTe e prev | nexr o

Preface to the First Edition

Introduction

Unix Standards

Organization of the Book

Examples in the Text

Systems Used to Test the Examples

Acknowledgments

== e rrev | nexr




=TeTe e prev | nexr o

Introduction

This book describes the programming interface to the Unix systemthe system call interface and many
of the functions provided in the standard C library. It is intended for anyone writing programs that
run under Unix.

Like most operating systems, Unix provides numerous services to the programs that are runningopen
a file, read a file, start a new program, allocate a region of memory, get the current time-of-day, and
so on. This has been termed the system call interface. Additionally, the standard C library provides
numerous functions that are used by almost every C program (format a variable's value for output,

compare two strings, etc.).

The system call interface and the library routines have traditionally been described in Sections 2 and
3 of the Unix Programmer's Manual. This book is not a duplication of these sections. Examples and
rationale are missing from the Unix Programmer's Manual, and that's what this book provides.
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Unix Standards

The proliferation of different versions of Unix during the 1980s has been tempered by the various
international standards that were started during the late 1980s. These include the ANSI standard for
the C programming language, the IEEE POSIX family (still being developed), and the X/Open
portability guide.

This book also describes these standards. But instead of just describing the standards by themselves,
we describe them in relation to popular implementations of the standardsSystem V Release 4 and the
forthcoming 4.4BSD. This provides a real-world description, which is often lacking from the standard
itself and from books that describe only the standard.
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Organization of the Book

This book is divided into six parts:

1. An overview and introduction to basic Unix programming concepts and terminology (Chapter 1),
with a discussion of the various Unix standardization efforts and different Unix implementations

(Chapter 2).

2. 1/Ounbuffered 1I/0 (Chapter 3), properties of files and directories (Chapter 4), the standard 1/0
library (Chapter 5), and the standard system data files (Chapter 6).

3. Processesthe environment of a Unix process (Chapter 7), process control (Chapter 8), the
relationships between different processes (Chapter 9), and signals (Chapter 10).

4. More I/Oterminal 1/0 (Chapter 11), advanced 1/0 (Chapter 12), and daemon processes
(Chapter 13).

5. IPClInterprocess communication (Chapters 14 and 15).

6. Examplesa database library (Chapter 16), communicating with a PostScript printer (Chapter
17), a modem dialing program (Chapter 18), and using pseudo terminals (Chapter 19).

A reading familiarity with C would be beneficial as would some experience using Unix. No prior
programming experience with Unix is assumed. This text is intended for programmers familiar with
Unix and programmers familiar with some other operating system who wish to learn the details of the
services provided by most Unix systems.
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Examples in the Text

This book contains many examplesapproximately 10,000 lines of source code. All the examples are in
the C programming language. Furthermore, these examples are in ANSI C. You should have a copy
of the Unix Programmer's Manual for your system handy while reading this book, since reference is
made to it for some of the more esoteric and implementation-dependent features.

Almost every function and system call is demonstrated with a small, complete program. This lets us
see the arguments and return values and is often easier to comprehend than the use of the function
in a much larger program. But since some of the small programs are contrived examples, a few
bigger examples are also included (Chapters 16, 17, 18, and 19). These larger examples demonstrate
the programming techniques in larger, real-world examples.

All the examples have been included in the text directly from their source files. A machine-readable
copy of all the examples is available via anonymous FTP from the Internet host ftp.uu.net in the file
publ i shed/ books/ st evens. advpr og. t ar. Z. Obtaining the source code allows you to modify the
programs from this text and experiment with them on your system.
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Systems Used to Test the Examples

Unfortunately all operating systems are moving targets. Unix is no exception. The following diagram
shows the recent evolution of the various versions of System V and 4.xBSD.

[View full size image]

1.3+BSD
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\ | ! ! .
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XPG3 ANSIC POSIX.1

4.xBSD are the various systems from the Computer Systems Research Group at the University of
California at Berkeley. This group also distributes the BSD Net 1 and BSD Net 2 releasespublicly
available source code from the 4.xBSD systems. SVRx refers to System V Release x from AT&T.
XPG3 is the X/Open Portability Guide, Issue 3, and ANSI C is the ANSI standard for the C
programming language. POSIX.1 is the IEEE and ISO standard for the interface to a Unix-like system.
We'll have more to say about these different standards and the various versions of Unix in Sections
2.2 and 2.3.

In this text we use the term 4.3+BSD to refer to the Unix system from Berkeley that
is somewhere between the BSD Net 2 release and 4.4BSD.

At the time of this writing, 4.4BSD was not released, so the system could not be called 4.4BSD.
Nevertheless a simple name was needed to refer to this system and 4.3+BSD is used
throughout the text.

Most of the examples in this text have been run on four different versions of Unix:

1. Unix System V/386 Release 4.0 Version 2.0 ("vanilla SVR4"™) from U.H. Corp. (UHC), on an Intel
80386 processor.

2. 4.3+BSD at the Computer Systems Research Group, Computer Science Division, University of
California at Berkeley, on a Hewlett Packard workstation.

3. BSD/386 (a derivative of the BSD Net 2 release) from Berkeley Software Design, Inc., on an
Intel 80386 processor. This system is almost identical to what we call 4.3+BSD.

4. SunOS 4.1.1 and 4.1.2 (systems with a strong Berkeley heritage but many System V features)
from Sun Microsystems, on a SPARCstation SLC.



Numerous timing tests are provided in the text and the systems used for the test are identified.
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1.1. Introduction

All operating systems provide services for programs they run. Typical services include executing a
new program, opening a file, reading a file, allocating a region of memory, getting the current time of
day, and so on. The focus of this text is to describe the services provided by various versions of the

UNIX operating system.

Describing the UNIX System in a strictly linear fashion, without any forward references to terms that
haven't been described yet, is nearly impossible (and would probably be boring). This chapter
provides a whirlwind tour of the UNIX System from a programmer's perspective. We'll give some
brief descriptions and examples of terms and concepts that appear throughout the text. We describe
these features in much more detail in later chapters. This chapter also provides an introduction and
overview of the services provided by the UNIX System, for programmers new to this environment.
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1.2. UNIX Architecture

In a strict sense, an operating system can be defined as the software that controls the hardware
resources of the computer and provides an environment under which programs can run. Generally,
we call this software the kernel, since it is relatively small and resides at the core of the environment.
Figure 1.1 shows a diagram of the UNIX System architecture.

Figure 1.1. Architecture of the UNIX operating system

applications

The interface to the kernel is a layer of software called the system calls (the shaded portion in Figure
1.1). Libraries of common functions are built on top of the system call interface, but applications are
free to use both. (We talk more about system calls and library functions in Section 1.11.) The shell is
a special application that provides an interface for running other applications.

In a broad sense, an operating system is the kernel and all the other software that makes a
computer useful and gives the computer its personality. This other software includes system utilities,
applications, shells, libraries of common functions, and so on.

For example, Linux is the kernel used by the GNU operating system. Some people refer to this as the
GNU/Linux operating system, but it is more commonly referred to as simply Linux. Although this
usage may not be correct in a strict sense, it is understandable, given the dual meaning of the phrase
operating system. (It also has the advantage of being more succinct.)
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1.3. Logging In

Login Name

When we log in to a UNIX system, we enter our login name, followed by our password. The system
then looks up our login name in its password file, usually the file / et c/ passwd. If we look at our entry
in the password file we see that it's composed of seven colon-separated fields: the login name,
encrypted password, numeric user ID (205), numeric group ID (105), a comment field, home
directory (/ hone/ sar ), and shell program (/ bi n/ ksh).

sar: x: 205: 105: St ephen Rago: / hone/ sar: / bi n/ ksh

All contemporary systems have moved the encrypted password to a different file. In Chapter 6, we'll
look at these files and some functions to access them.

Shells

Once we log in, some system information messages are typically displayed, and then we can type
commands to the shell program. (Some systems start a window management program when you log
in, but you generally end up with a shell running in one of the windows.) A shell is a command-line
interpreter that reads user input and executes commands. The user input to a shell is normally from
the terminal (an interactive shell) or sometimes from a file (called a shell script). The common shells
in use are summarized in Figure 1.2.

Figure 1.2. Common shells used on UNIX systems

FreeBSD Linux Mac OS X
Name Path 52.1 2.4.22 10.3 Solaris 9
Bourne shell / bi n/sh - link to bash | link to bash -
Bourne-again shell | /bin/bash optional . . -
C shell / bi n/csh link to tcsh | linkto tcsh | link to tcsh -
Korn shell / bi n/ ksh -
TENEX C shell / bin/tcsh - - - -




The system knows which shell to execute for us from the final field in our entry in the password file.

The Bourne shell, developed by Steve Bourne at Bell Labs, has been in use since Version 7 and is
provided with almost every UNIX system in existence. The control-flow constructs of the Bourne shell
are reminiscent of Algol 68.

The C shell, developed by Bill Joy at Berkeley, is provided with all the BSD releases. Additionally, the
C shell was provided by AT&T with System V/386 Release 3.2 and is also in System V Release 4
(SVR4). (We'll have more to say about these different versions of the UNIX System in the next
chapter.) The C shell was built on the 6th Edition shell, not the Bourne shell. Its control flow looks
more like the C language, and it supports additional features that weren't provided by the Bourne
shell: job control, a history mechanism, and command line editing.

The Korn shell is considered a successor to the Bourne shell and was first provided with SVR4. The
Korn shell, developed by David Korn at Bell Labs, runs on most UNIX systems, but before SVR4 was
usually an extra-cost add-on, so it is not as widespread as the other two shells. It is upward
compatible with the Bourne shell and includes those features that made the C shell popular: job
control, command line editing, and so on.

The Bourne-again shell is the GNU shell provided with all Linux systems. It was designed to be
POSIX-conformant, while still remaining compatible with the Bourne shell. It supports features from
both the C shell and the Korn shell.

The TENEX C shell is an enhanced version of the C shell. It borrows several features, such as
command completion, from the TENEX operating system (developed in 1972 at Bolt Beranek and
Newman). The TENEX C shell adds many features to the C shell and is often used as a replacement
for the C shell.

Linux uses the Bourne-again shell for its default shell. In fact, / bi n/ sh is a link to / bi n/ bash.
The default user shell in FreeBSD and Mac OS X is the TENEX C shell, but they use the Bourne
shell for their administrative shell scripts because the C shell's programming language is
notoriously difficult to use. Solaris, having its heritage in both BSD and System V, provides all
the shells shown in Figure 1.2. Free ports of most of the shells are available on the Internet.

Throughout the text, we will use parenthetical notes such as this to describe historical notes and
to compare different implementations of the UNIX System. Often the reason for a particular
implementation technique becomes clear when the historical reasons are described.

Throughout this text, we'll show interactive shell examples to execute a program that we've

developed. These examples use features common to the Bourne shell, the Korn shell, and the
Bourne-again shell.
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1.4. Files and Directories

File System

The UNIX file system is a hierarchical arrangement of directories and files. Everything starts in the
directory called root whose name is the single character /.

A directory is a file that contains directory entries. Logically, we can think of each directory entry as
containing a filename along with a structure of information describing the attributes of the file. The
attributes of a file are such things as type of fileregular file, directorythe size of the file, the owner of
the file, permissions for the filewhether other users may access this fileand when the file was last
modified. The st at and f st at functions return a structure of information containing all the attributes
of a file. In Chapter 4, we'll examine all the attributes of a file in great detail.

We make a distinction between the logical view of a directory entry and the way it is actually
stored on disk. Most implementations of UNIX file systems don't store attributes in the directory
entries themselves, because of the difficulty of keeping them in synch when a file has multiple
hard links. This will become clear when we discuss hard links in Chapter 4.

Filename

The names in a directory are called filenames. The only two characters that cannot appear in a
filename are the slash character (/) and the null character. The slash separates the filenames that
form a pathname (described next) and the null character terminates a pathname. Nevertheless, it's
good practice to restrict the characters in a filename to a subset of the normal printing characters.
(We restrict the characters because if we use some of the shell's special characters in the filename,
we have to use the shell's quoting mechanism to reference the filename, and this can get
complicated.)

Two filenames are automatically created whenever a new directory is created: . (called dot) and ..
(called dot-dot). Dot refers to the current directory, and dot-dot refers to the parent directory. In the
root directory, dot-dot is the same as dot.

The Research UNIX System and some older UNIX System V file systems restricted a filename to 14
characters. BSD versions extended this limit to 255 characters. Today, almost all commercial UNIX
file systems support at least 255-character filenames.

Pathname

A sequence of one or more filenames, separated by slashes and optionally starting with a slash,
forms a pathname. A pathname that begins with a slash is called an absolute pathname; otherwise,
it's called a relative pathname. Relative pathnames refer to files relative to the current directory. The



name for the root of the file system (/) is a special-case absolute pathname that has no filename
component.

Example

Listing the names of all the files in a directory is not difficult. Figure 1.3 shows a bare-bones
implementation of the | s(1) command.

The notation | s(1) is the normal way to reference a particular entry in the UNIX system manuals. It
refers to the entry for | s in Section 1. The sections are normally numbered 1 through 8, and all the
entries within each section are arranged alphabetically. Throughout this text, we assume that you
have a copy of the manuals for your UNIX system.

Historically, UNIX systems lumped all eight sections together into what was called the UNIX
Programmer's Manual. As the page count increased, the trend changed to distributing the
sections among separate manuals: one for users, one for programmers, and one for system
administrators, for example.

Some UNIX systems further divide the manual pages within a given section, using an uppercase
letter. For example, all the standard input/output (1/0) functions in AT&T [1990e] are indicated
as being in Section 3S, as in f open(3S). Other systems have replaced the numeric sections with
alphabetic ones, such as C for commands.

Today, most manuals are distributed in electronic form. If your manuals are online, the way to see

the manual pages for the | s command would be something like

man 1 1s

or

man -sl1 |Is

Figure 1.3 is a program that just prints the name of every file in a directory, and nothing else. If the
source file is named nyl s. ¢, we compile it into the default a. out executable file by

cc nyls.c

Historically, cc(1) is the C compiler. On systems with the GNU C compilation system, the C
compiler is gcc(1). Here, cc is often linked to gcc.

Some sample output is



$ ./a.out /dev

consol e
tty
nmem
kmem
nul
nouse
stdin
st dout
stderr
zero
many more lines that aren't shown
cdrom
$ ./a.out /var/spool/cron
can't open /var/spool/cron: Perm ssion denied
$ ./a.out /dev/itty
can't open /dev/tty: Not a directory

Throughout this text, we'll show commands that we run and the resulting output in this fashion:
Characters that we type are shown in t hi s font, whereas output from programs is shown | i ke this.
If we need to add comments to this output, we'll show the comments in italics. The dollar sign that
precedes our input is the prompt that is printed by the shell. We'll always show the shell prompt as a
dollar sign.

Note that the directory listing is not in alphabetical order. The | s command sorts the names before
printing them.

There are many details to consider in this 20-line program.

e First, we include a header of our own: apue. h. We include this header in almost every program
in this text. This header includes some standard system headers and defines numerous
constants and function prototypes that we use throughout the examples in the text. A listing of
this header is in Appendix B.

e The declaration of the mai n function uses the style supported by the I1SO C standard. (We'll have
more to say about the ISO C standard in the next chapter.)

e We take an argument from the command line, ar gv[ 1], as the name of the directory to list. In
Chapter 7, we'll look at how the mai n function is called and how the command-line arguments
and environment variables are accessible to the program.

e Because the actual format of directory entries varies from one UNIX system to another, we use
the functions opendi r, readdi r, and cl osedi r to manipulate the directory.

e The opendir function returns a pointer to a DI R structure, and we pass this pointer to the
readdi r function. We don't care what's in the DI R structure. We then call readdi r in a loop, to
read each directory entry. The readdi r function returns a pointer to a di rent structure or, when
it's finished with the directory, a null pointer. All we examine in the di rent structure is the name



of each directory entry (d_nane). Using this name, we could then call the st at function (Section
4.2) to determine all the attributes of the file.

e We call two functions of our own to handle the errors: err_sys and err_qui t . We can see from
the preceding output that the err_sys function prints an informative message describing what
type of error was encountered ("Permission denied" or "Not a directory™). These two error
functions are shown and described in Appendix B. We also talk more about error handling in
Section 1.7.

e When the program is done, it calls the function exi t with an argument of 0. The function exi t
terminates a program. By convention, an argument of 0 means OK, and an argument between
1 and 255 means that an error occurred. In Section 8.5, we show how any program, such as a
shell or a program that we write, can obtain the exit status of a program that it executes.

Figure 1.3. List all the files in a directory

#i ncl ude "apue. h"
#i ncl ude <dirent. h>

i nt
mai n(int argc, char *argv[])
{
D R *dp;
struct dirent *dirp;
if (argc !'= 2)
err_quit("usage: |Is directory_nane");
if ((dp = opendir(argv[1l])) == NULL)
err_sys("can't open %", argv[1]);
while ((dirp = readdir(dp)) !'= NULL)
printf("%\n", dirp->d_nane);
cl osedir (dp);
exit(0);
}

Working Directory

Every process has a working directory, sometimes called the current working directory. This is the
directory from which all relative pathnames are interpreted. A process can change its working
directory with the chdi r function.

For example, the relative pathname doc/ neno/ j oe refers to the file or directory j oe, in the directory
meno, in the directory doc, which must be a directory within the working directory. From looking just
at this pathname, we know that both doc and neno have to be directories, but we can't tell whether
j oe is a file or a directory. The pathname /usr/lib/lint is an absolute pathname that refers to the



file or directory |i nt in the directory | i b, in the directory usr, which is in the root directory.

Home Directory

When we log in, the working directory is set to our home directory. Our home directory is obtained
from our entry in the password file (Section 1.3).
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1.5. Input and Output

File Descriptors

File descriptors are normally small non-negative integers that the kernel uses to identify the files
being accessed by a particular process. Whenever it opens an existing file or creates a new file, the
kernel returns a file descriptor that we use when we want to read or write the file.

Standard Input, Standard Output, and Standard Error

By convention, all shells open three descriptors whenever a new program is run: standard input,
standard output, and standard error. If nothing special is done, as in the simple command

l's

then all three are connected to the terminal. Most shells provide a way to redirect any or all of these
three descriptors to any file. For example,

ls > file.list

executes the | s command with its standard output redirected to the file named file.list.

Unbuffered 1/0

Unbuffered 1/0 is provided by the functions open, read, wite, | seek, and cl ose. These functions all
work with file descriptors.

Example

If we're willing to read from the standard input and write to the standard output, then the program in
Figure 1.4 copies any regular file on a UNIX system.

The <uni st d. h> header, included by apue. h, and the two constants STDI N_FI LENO and STDOUT_FI LENO
are part of the POSIX standard (about which we'll have a lot more to say in the next chapter). In this



header are function prototypes for many of the UNIX system services, such as theread and wite
functions that we call.

The constants STDI N_FI LENO and STDOUT_FI LENO are defined in <uni st d. h> and specify the file
descriptors for standard input and standard output. These values are typically O and 1, respectively,
but we'll use the new names for portability.

In Section 3.9, we'll examine the BUFFSI ZE constant in detail, seeing how various values affect the
efficiency of the program. Regardless of the value of this constant, however, this program still copies
any regular file.

The read function returns the number of bytes that are read, and this value is used as the number of
bytes to write. When the end of the input file is encountered, read returns O and the program stops.
If a read error occurs, read returns -1. Most of the system functions return 1 when an error occurs.

If we compile the program into the standard name (a. out ) and execute it as

./a.out > data

standard input is the terminal, standard output is redirected to the file dat a, and standard error is
also the terminal. If this output file doesn't exist, the shell creates it by default. The program copies
lines that we type to the standard output until we type the end-of-file character (usually Control-D).

If we run

.Ja.out < infile > outfile

then the file named i nfi | e will be copied to the file named outfil e.

Figure 1.4. List all the files in a directory

#i ncl ude "apue. h"
#def i ne BUFFSI ZE 4096

i nt
mai n( voi d)
{ .
i nt n;
char buf [ BUFFSI ZE] ;

while ((n = read(STDI N_FI LENO, buf, BUFFSIZE)) > 0)
if (wite(STDOUT_FILENO, buf, n) !'=n)
err_sys("wite error");



if (n<0)
err_sys("read error");

exit(0);

In Chapter 3, we describe the unbuffered 170 functions in more detail.

Standard /O

The standard 1/0 functions provide a buffered interface to the unbuffered 1/0 functions. Using
standard 1/0 prevents us from having to worry about choosing optimal buffer sizes, such as the
BUFFSI ZE constant in Figure 1.4. Another advantage of using the standard 1/0 functions is that they
simplify dealing with lines of input (a common occurrence in UNIX applications). The f get s function,
for example, reads an entire line. The r ead function, on the other hand, reads a specified number of
bytes. As we shall see in Section 5.4, the standard 1/0 library provides functions that let us control
the style of buffering used by the library.

The most common standard 1/0 function is pri ntf. In programs that call pri nt f, we'll always include
<st di 0. h>normally by including apue. has this header contains the function prototypes for all the
standard 1/0 functions.

Example

The program in Figure 1.5, which we'll examine in more detail in Section 5.8, is like the previous
program that called read and wri t e. This program copies standard input to standard output and can
copy any regular file.

The function get ¢ reads one character at a time, and this character is written by put c. After the last
byte of input has been read, get c returns the constant ECF (defined in <st di 0. h>). The standard 1/0
constants st di n and st dout are also defined in the <st di 0. h> header and refer to the standard input
and standard output.

Figure 1.5. Copy standard input to standard output, using standard 170

#1 ncl ude "apue. h"

i nt
mai n(voi d)
{

i nt C;

while ((c = getc(stdin)) !'= EOF)
if (putc(c, stdout) == EOF)
err_sys("output error");



if (ferror(stdin))
err_sys("input error");

exit(0);
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1.6. Programs and Processes

Program

A program is an executable file residing on disk in a directory. A program is read into memory and is
executed by the kernel as a result of one of the six exec functions. We'll cover these functions in
Section 8.10.

Processes and Process ID

An executing instance of a program is called a process, a term used on almost every page of this
text. Some operating systems use the term task to refer to a program that is being executed.

The UNIX System guarantees that every process has a unique numeric identifier called the process
ID. The process ID is always a non-negative integer.

Example

The program in Figure 1.6 prints its process ID.

If we compile this program into the file a. out and execute it, we have

$ ./a.out
hell o world from process |ID 851
$ ./a.out

hell o world from process |ID 854

When this program runs, it calls the function get pi d to obtain its process ID.

Figure 1.6. Print the process ID

#i ncl ude "apue. h"

i nt
mai n( voi d)
{
printf("hello world fromprocess ID %\ n", getpid());



exit(0);

Process Control

There are three primary functions for process control: f ork, exec, and wai t pi d. (The exec function
has six variants, but we often refer to them collectively as simply the exec function.)

Example

The process control features of the UNIX System are demonstrated using a simple program (Figure
1.7) that reads commands from standard input and executes the commands. This is a bare-bones
implementation of a shell-like program. There are several features to consider in this 30-line
program.

¢ We use the standard 1/0 function f get s to read one line at a time from the standard input.
When we type the end-of-file character (which is often Control-D) as the first character of a
line, f get s returns a null pointer, the loop stops, and the process terminates. In Chapter 18, we
describe all the special terminal charactersend of file, backspace one character, erase entire
line, and so onand how to change them.

e Because each line returned by f get s is terminated with a newline character, followed by a null
byte, we use the standard C function st r| en to calculate the length of the string, and then
replace the newline with a null byte. We do this because the execl p function wants a null-
terminated argument, not a newline-terminated argument.

e We call f ork to create a new process, which is a copy of the caller. We say that the caller is the
parent and that the newly created process is the child. Then f or k returns the non-negative
process ID of the new child process to the parent, and returns 0 to the child. Because f or k
creates a new process, we say that it is called onceby the parentbut returns twicein the parent
and in the child.

¢ In the child, we call execl p to execute the command that was read from the standard input.
This replaces the child process with the new program file. The combination of a f or k, followed
by an exec, is what some operating systems call spawning a new process. In the UNIX System,
the two parts are separated into individual functions. We'll have a lot more to say about these
functions in Chapter 8.

e Because the child calls execl p to execute the new program file, the parent wants to wait for the
child to terminate. This is done by calling wai t pi d, specifying which process we want to wait for:
the pi d argument, which is the process ID of the child. The wai t pi d function also returns the
termination status of the childthe st at us variablebut in this simple program, we don't do
anything with this value. We could examine it to determine exactly how the child terminated.

e The most fundamental limitation of this program is that we can't pass arguments to the
command that we execute. We can't, for example, specify the name of a directory to list. We
can execute | s only on the working directory. To allow arguments would require that we parse



the input line, separating the arguments by some convention, probably spaces or tabs, and then
pass each argument as a separate argument to the execl p function. Nevertheless, this program
is still a useful demonstration of the process control functions of the UNIX System.

If we run this program, we get the following results. Note that our program has a different promptthe
percent signto distinguish it from the shell's prompt.

$ ./a.out

% dat e

Sun Aug 1 03:04:47 EDT 2004 programmers work late
% who

sar -0 Jul 26 22:54

sar pts/0 Jul 26 22:54 (:0)

sar pts/1 Jul 26 22:54 (:0)

sar pts/2 Jul 26 22:54 (:0)

% pwd

/ hone/ sar/ bk/ apue/ 2e

%ls

Makefil e

a. out

shell1.c

% "D type the end-of-file character
$ the regular shell prompt

Figure 1.7. Read commands from standard input and execute them

#i ncl ude "apue. h"
#i ncl ude <sys/wait.h>

i nt

mai n(voi d)

{
char buf [ MAXLI NE] ; [* from apue. h */
pid t pi d;
i nt st at us;

printf("%®0"); [* print pronmpt (printf requires %®oto print %9 */
while (fgets(buf, MAXLINE, stdin) !'= NULL) {
if (buf[strlen(buf) - 1] == "\n")
buf[strlen(buf) - 1] = 0; /* replace newwine with null */

if ((pid = fork()) < 0) {
err_sys("fork error");

} else if (pid == 0) { /[* child */
execl p(buf, buf, (char *)0);
err_ret("couldn't execute: %", buf);
exit(127);



}

[* parent */
if ((pid = waitpid(pid, &tatus, 0)) < 0)
err_sys("waitpid error");
printf("%6");
}
exit(0);

The notation 2D is used to indicate a control character. Control characters are special characters
formed by holding down the control keyoften labeled Control or Ctrl on your keyboard and then
pressing another key at the same time. Control-D, or 2D, is the default end-of-file character.
We'll see many more control characters when we discuss terminal 1/0 in Chapter 18.

Threads and Thread IDs

Usually, a process has only one thread of controlone set of machine instructions executing at a time.
Some problems are easier to solve when more than one thread of control can operate on different
parts of the problem. Additionally, multiple threads of control can exploit the parallelism possible on
multiprocessor systems.

All the threads within a process share the same address space, file descriptors, stacks, and process-
related attributes. Because they can access the same memory, the threads need to synchronize
access to shared data among themselves to avoid inconsistencies.

As with processes, threads are identified by IDs. Thread IDs, however, are local to a process. A
thread ID from one process has no meaning in another process. We use thread IDs to refer to
specific threads as we manipulate the threads within a process.

Functions to control threads parallel those used to control processes. Because threads were added to
the UNIX System long after the process model was established, however, the thread model and the
process model have some complicated interactions, as we shall see in Chapter 12.
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1.7. Error Handling

When an error occurs in one of the UNIX System functions, a negative value is often returned, and
the integer errno is usually set to a value that gives additional information. For example, the open
function returns either a non-negative file descriptor if all is OK or 1 if an error occurs. An error from
open has about 15 possible errno values, such as file doesn't exist, permission problem, and so on.
Some functions use a convention other than returning a negative value. For example, most functions
that return a pointer to an object return a null pointer to indicate an error.

The file <errno. h> defines the symbol errno and constants for each value that errno can assume.
Each of these constants begins with the character E. Also, the first page of Section 2 of the UNIX
system manuals, named i ntro(2), usually lists all these error constants. For example, if errno is
equal to the constant EACCES, this indicates a permission problem, such as insufficient permission to
open the requested file.

On Linux, the error constants are listed in the err no(3) manual page.

POSIX and ISO C define errno as a symbol expanding into a modifiable Ivalue of type integer. This
can be either an integer that contains the error number or a function that returns a pointer to the
error number. The historical definition is

extern int errno;

But in an environment that supports threads, the process address space is shared among multiple
threads, and each thread needs its own local copy of er rno to prevent one thread from interfering
with another. Linux, for example, supports multithreaded access to errno by defining it as

extern int *__errno_l ocation(void);
#define errno (*_ _errno_location())

There are two rules to be aware of with respect to errno. First, its value is never cleared by a routine
if an error does not occur. Therefore, we should examine its value only when the return value from a
function indicates that an error occurred. Second, the value of errno is never set to O by any of the
functions, and none of the constants defined in <errno. h> has a value of 0.

Two functions are defined by the C standard to help with printing error messages.



#i nclude <string. h>

char *strerror(int ernum);

Returns: pointer to message string

This function maps errnum, which is typically the errno value, into an error message string and
returns a pointer to the string.

The perror function produces an error message on the standard error, based on the current value of
errno, and returns.

#i ncl ude <stdi o. h>

voi d perror(const char *msg);

It outputs the string pointed to by msg, followed by a colon and a space, followed by the error
message corresponding to the value of err no, followed by a newline.

Example

Figure 1.8 shows the use of these two error functions.
If this program is compiled into the file a. out , we have
$ ./a.out

EACCES: Perm ssion denied
./la.out: No such file or directory

Note that we pass the name of the programar gv[ 0] , whose value is ./ a. out as the argument to
perror. This is a standard convention in the UNIX System. By doing this, if the program is executed

as part of a pipeline, as in

progl < inputfile | prog2 | prog3 > outputfile



we are able to tell which of the three programs generated a particular error message.

Figure 1.8. Demonstrate strerror and perror

#i ncl ude "apue. h"
#i ncl ude <errno. h>

i nt
mai n(i nt argc, char *argv[])
{
fprintf(stderr, "EACCES:. %\n", strerror(EACCES));
errno = ENOENT;
perror(argv[0]);
exit(0);
}

Instead of calling either strerror or perror directly, all the examples in this text use the error
functions shown in Appendix B. The error functions in this appendix let us use the variable argument
list facility of ISO C to handle error conditions with a single C statement.

Error Recovery

The errors defined in <errno. h> can be divided into two categories: fatal and nonfatal. A fatal error
has no recovery action. The best we can do is print an error message on the user's screen or write an
error message into a log file, and then exit. Nonfatal errors, on the other hand, can sometimes be
dealt with more robustly. Most nonfatal errors are temporary in nature, such as with a resource
shortage, and might not occur when there is less activity on the system.

Resource-related nonfatal errors include EAGAI N, ENFI LE, ENOBUFS, ENCLCK, ENOSPC, ENOSR, EWOULDBLOCK,
and sometimes ENOVEM EBUSY can be treated as a nonfatal error when it indicates that a shared
resource is in use. Sometimes, ElI NTR can be treated as a nonfatal error when it interrupts a slow
system call (more on this in Section 10.5).

The typical recovery action for a resource-related nonfatal error is to delay a little and try again later.
This technique can be applied in other circumstances. For example, if an error indicates that a
network connection is no longer functioning, it might be possible for the application to delay a short
time and then reestablish the connection. Some applications use an exponential backoff algorithm,
waiting a longer period of time each iteration.

Ultimately, it is up to the application developer to determine which errors are recoverable. If a
reasonable strategy can be used to recover from an error, we can improve the robustness of our
application by avoiding an abnormal exit.
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1.8. User Identification

User ID

The user ID from our entry in the password file is a numeric value that identifies us to the system.
This user ID is assigned by the system administrator when our login name is assigned, and we cannot
change it. The user ID is normally assigned to be unique for every user. We'll see how the kernel
uses the user ID to check whether we have the appropriate permissions to perform certain
operations.

We call the user whose user ID is O either root or the superuser. The entry in the password file
normally has a login name of r oot , and we refer to the special privileges of this user as superuser
privileges. As we'll see in Chapter 4, if a process has superuser privileges, most file permission checks
are bypassed. Some operating system functions are restricted to the superuser. The superuser has
free rein over the system.

Client versions of Mac OS X ship with the superuser account disabled; server versions ship with
the account already enabled. Instructions are available on Apple's Web site describing how to
enable it. See http://docs.info.apple.comarticle.htm ?art num=106290.

Group ID

Our entry in the password file also specifies our numeric group ID. This too is assigned by the system
administrator when our login name is assigned. Typically, the password file contains multiple entries
that specify the same group ID. Groups are normally used to collect users together into projects or
departments. This allows the sharing of resources, such as files, among members of the same group.
We'll see in Section 4.5 that we can set the permissions on a file so that all members of a group can
access the file, whereas others outside the group cannot.

There is also a group file that maps group names into numeric group IDs. The group file is usually
/ etc/ group.

The use of numeric user IDs and numeric group IDs for permissions is historical. With every file on
disk, the file system stores both the user ID and the group ID of a file's owner. Storing both of these
values requires only four bytes, assuming that each is stored as a two-byte integer. If the full ASCII
login name and group name were used instead, additional disk space would be required. In addition,
comparing strings during permission checks is more expensive than comparing integers.

Users, however, work better with names than with numbers, so the password file maintains the
mapping between login names and user IDs, and the group file provides the mapping between group
names and group IDs. The I s -1 command, for example, prints the login name of the owner of a file,
using the password file to map the numeric user ID into the corresponding login name.

Early UNIX systems used 16-bit integers to represent user and group IDs. Contemporary UNIX


http://docs.info.apple.com/article.html?artnum=106290

systems use 32-bit integers.

Example

The program in Figure 1.9 prints the user ID and the group ID.
We call the functions get ui d and get gi d to return the user ID and the group ID. Running the program
yields

$ ./a.out

uid = 205, gid = 105

Figure 1.9. Print user 1D and group ID

#i ncl ude "apue. h"

i nt

mai n( voi d)

{
printf("uid = %, gid = %\ n", getuid(), getgid());
exit(0);

}

Supplementary Group IDs

In addition to the group ID specified in the password file for a login name, most versions of the UNIX
System allow a user to belong to additional groups. This started with 4.2BSD, which allowed a user to
belong to up to 16 additional groups. These supplementary group IDs are obtained at login time by
reading the file / et ¢/ gr oup and finding the first 16 entries that list the user as a member. As we shall
see in the next chapter, POSIX requires that a system support at least eight supplementary groups
per process, but most systems support at least 16.
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1.9. Signals

Signals are a technique used to notify a process that some condition has occurred. For example, if a
process divides by zero, the signal whose name is Sl GFPE (floating-point exception) is sent to the
process. The process has three choices for dealing with the signal.

1. Ignore the signal. This option isn't recommended for signals that denote a hardware exception,
such as dividing by zero or referencing memory outside the address space of the process, as the
results are undefined.

2. Let the default action occur. For a divide-by-zero condition, the default is to terminate the
process.

3. Provide a function that is called when the signal occurs (this is called "catching" the signal). By
providing a function of our own, we'll know when the signal occurs and we can handle it as we

wish.

Many conditions generate sighals. Two terminal keys, called the interrupt key often the DELETE key
or Control-Cand the quit keyoften Control-backslashare used to interrupt the currently running
process. Another way to generate a signal is by calling the ki I I function. We can call this function
from a process to send a signal to another process. Naturally, there are limitations: we have to be
the owner of the other process (or the superuser) to be able to send it a signal.

Example

Recall the bare-bones shell example (Eigure 1.7). If we invoke this program and press the interrupt
key, the process terminates because the default action for this signal, named SI G NT, is to terminate
the process. The process hasn't told the kernel to do anything other than the default with this signal,

so the process terminates.

To catch this signal, the program needs to call the si gnal function, specifying the name of the
function to call when the SI G NT signal is generated. The function is named si g_i nt ; when it's called,
it just prints a message and a new prompt. Adding 11 lines to the program in Figure 1.7 gives us the
version in Figure 1.10. (The 11 new lines are indicated with a plus sign at the beginning of the line.)

In Chapter 10, we'll take a long look at signals, as most nontrivial applications deal with them.

Figure 1.10. Read commands from standard input and execute them

#i ncl ude "apue. h"
#incl ude <sys/wait.h>



+ static void sig_int(int); /* our signal-catching function */
+

i nt
mai n(voi d)
{
char buf [ MAXLI NE] ; /* from apue. h */
pid_t pi d;
i nt st at us;
+ if (signal (SIA@NT, sig.int) == SIGERR
+ err_sys("signal error");
+
printf("%®6"); [/* print pronpt (printf requires %®boto print %9 */
while (fgets(buf, MAXLINE, stdin) != NULL) {

if (buf[strlen(buf) - 1] == "\n")
buf [strlen(buf) - 1] = 0; /* replace newine with null */

if ((pid="fork()) <0) {
err_sys("fork error");

} else if (pid==0) { [* child */
execl p(buf, buf, (char *)0);
err_ret("couldn't execute: %", buf);
exit(127);

}

[* parent */

if ((pid = waitpid(pid, &status, 0)) < 0)
err_sys("waitpid error");

printf("%6");

}
exit(0);
}
+
+ void
+ sig_int(int signo)
+{
+ printf("interrupt\n%e");
+}
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1.10. Time Values

Historically, UNIX systems have maintained two different time values:

1. Calendar time. This value counts the number of seconds since the Epoch: 00:00:00 January 1,
1970, Coordinated Universal Time (UTC). (Older manuals refer to UTC as Greenwich Mean
Time.) These time values are used to record the time when a file was last modified, for
example.

The primitive system data type ti ne_t holds these time values.

2. Process time. This is also called CPU time and measures the central processor resources used by
a process. Process time is measured in clock ticks, which have historically been 50, 60, or 100
ticks per second.

The primitive system data type cl ock_t holds these time values. (We'll show how to obtain the
number of clock ticks per second with the sysconf function in Section 2.5.4.)

When we measure the execution time of a process, as in Section 3.9, we'll see that the UNIX System
maintains three values for a process:

e Clock time
e User CPU time
e System CPU time

The clock time, sometimes called wall clock time, is the amount of time the process takes to run, and
its value depends on the number of other processes being run on the system. Whenever we report
the clock time, the measurements are made with no other activities on the system.

The user CPU time is the CPU time attributed to user instructions. The system CPU time is the CPU
time attributed to the kernel when it executes on behalf of the process. For example, whenever a
process executes a system service, such as read or write, the time spent within the kernel
performing that system service is charged to the process. The sum of user CPU time and system CPU
time is often called the CPU time.

It is easy to measure the clock time, user time, and system time of any process: simply execute the
ti me(1) command, with the argument to the ti me command being the command we want to
measure. For example:

$ cd /usr/include
$ time -p grep _POSI X_SOURCE */*.h > /dev/null



real 0on0D. 81s
user onD. 11s
Sys OnD. 07s

The output format from the ti me command depends on the shell being used, because some shells
don't run /usr/bin/time, but instead have a separate built-in function to measure the time it takes
commands to run.

In Section 8.16, we'll see how to obtain these three times from a running process. The general topic
of times and dates is covered in Section 6.10.
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1.11. System Calls and Library Functions

All operating systems provide service points through which programs request services from the
kernel. All implementations of the UNIX System provide a well-defined, limited number of entry
points directly into the kernel called system calls (recall Figure 1.1). Version 7 of the Research UNIX
System provided about 50 system calls, 4.4BSD provided about 110, and SVR4 had around 120.
Linux has anywhere between 240 and 260 system calls, depending on the version. FreeBSD has
around 320.

The system call interface has always been documented in Section 2 of the UNIX Programmer's
Manual. Its definition is in the C language, regardless of the actual implementation technique used on
any given system to invoke a system call. This differs from many older operating systems, which
traditionally defined the kernel entry points in the assembler language of the machine.

The technique used on UNIX systems is for each system call to have a function of the same name in
the standard C library. The user process calls this function, using the standard C calling sequence.
This function then invokes the appropriate kernel service, using whatever technique is required on
the system. For example, the function may put one or more of the C arguments into general
registers and then execute some machine instruction that generates a software interrupt in the
kernel. For our purposes, we can consider the system calls as being C functions.

Section 3 of the UNIX Programmer's Manual defines the general-purpose functions available to
programmers. These functions aren't entry points into the kernel, although they may invoke one or
more of the kernel's system calls. For example, the printf function may use the wit e system call to
output a string, but the st rcpy (copy a string) and at oi (convert ASCII to integer) functions don't
involve the kernel at all.

From an implementor's point of view, the distinction between a system call and a library function is
fundamental. But from a user's perspective, the difference is not as critical. From our perspective in
this text, both system calls and library functions appear as normal C functions. Both exist to provide
services for application programs. We should realize, however, that we can replace the library
functions, if desired, whereas the system calls usually cannot be replaced.

Consider the memory allocation function mal | oc as an example. There are many ways to do memory
allocation and its associated garbage collection (best fit, first fit, and so on). No single technique is
optimal for all programs. The UNIX system call that handles memory allocation, sbrk(2), is not a
general-purpose memory manager. It increases or decreases the address space of the process by a
specified number of bytes. How that space is managed is up to the process. The memory allocation
function, mal | oc(3), implements one particular type of allocation. If we don't like its operation, we
can define our own mal | oc function, which will probably use the sbrk system call. In fact, numerous
software packages implement their own memory allocation algorithms with the sbr k system call.
Figure 1.11 shows the relationship between the application, the nal | oc function, and the sbrk system
call.

Figure 1.11. Separation of nal | oc function and sbrk system call
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Here we have a clean separation of duties: the system call in the kernel allocates an additional chunk
of space on behalf of the process. The nal | oc library function manages this space from user level.

Another example to illustrate the difference between a system call and a library function is the
interface the UNIX System provides to determine the current time and date. Some operating systems
provide one system call to return the time and another to return the date. Any special handling, such
as the switch to or from daylight saving time, is handled by the kernel or requires human
intervention. The UNIX System, on the other hand, provides a single system call that returns the
number of seconds since the Epoch: midnight, January 1, 1970, Coordinated Universal Time. Any
interpretation of this value, such as converting it to a human-readable time and date using the local
time zone, is left to the user process. The standard C library provides routines to handle most cases.
These library routines handle such details as the various algorithms for daylight saving time.

An application can call either a system call or a library routine. Also realize that many library routines
invoke a system call. This is shown in Figure 1.12.

Figure 1.12. Difference between C library functions and system calls
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Another difference between system calls and library functions is that system calls usually provide a

minimal interface, whereas library functions often provide more elaborate functionality. We've seen

this already in the difference between the sbrk system call and the nal | oc library function. We'll see
this difference later, when we compare the unbuffered 1/0 functions (Chapter 3) and the standard

1/0 functions (Chapter 5).

The process control system calls (f ork, exec, and wai t ) are usually invoked by the user's application
code directly. (Recall the bare-bones shell in Figure 1.7.) But some library routines exist to simplify
certain common cases: the syst emand popen library routines, for example. In Section 8.13, we'll
show an implementation of the syst emfunction that invokes the basic process control system calls.
We'll enhance this example in Section 10.18 to handle signals correctly.

To define the interface to the UNIX System that most programmers use, we have to describe both
the system calls and some of the library functions. If we described only the sbrk system call, for
example, we would skip the more programmer-friendly nal | oc library function that many applications
use. In this text, we'll use the term function to refer to both system calls and library functions, except
when the distinction is necessary.

BBaRL
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1.12. Summary

This chapter has been a short tour of the UNIX System. We've described some of the fundamental
terms that we'll encounter over and over again. We've seen numerous small examples of UNIX
programs to give us a feel for what the remainder of the text talks about.

The next chapter is about standardization of the UNIX System and the effect of work in this area on
current systems. Standards, particularly the 1SO C standard and the POSIX.1 standard, will affect the

rest of the text.
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Exercises

1.1 Verify on your system that the directories dot and dot-dot are not the same, except in
the root directory.

1.2 In the output from the program in Figure 1.6, what happened to the processes with
process IDs 852 and 8537

1.3 In Section 1.7, the argument to perror is defined with the ISO C attribute const,
whereas the integer argument to strerror isn't defined with this attribute. Why?

1.4 Inthe error-handling function err _sys in Appendix B, why is the value of errno saved
when the function is called?

1.5 If the calendar time is stored as a signed 32-bit integer, in what year will it overflow?
What ways can be used to extend the overflow point? Are they compatible with existing
applications?

1.6 If the process time is stored as a signed 32-bit integer, and if the system counts 100
ticks per second, after how many days will the value overflow?
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2.1. Introduction

Much work has gone into standardizing the UNIX programming environment and the C programming
language. Although applications have always been quite portable across different versions of the
UNIX operating system, the proliferation of versions and differences during the 1980s led many large
users, such as the U.S. government, to call for standardization.

In this chapter we first look at the various standardization efforts that have been under way over the
past two decades. We then discuss the effects of these UNIX programming standards on the
operating system implementations that are described in this book. An important part of all the
standardization efforts is the specification of various limits that each implementation must define, so
we look at these limits and the various ways to determine their values.

== e prcv | nexrw |
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2.2. UNIX Standardization

22.1.1SOC

In late 1989, ANSI Standard X3.1591989 for the C programming language was approved. This
standard has also been adopted as international standard ISO/IEC 9899:1990. ANSI is the American
National Standards Institute, the U.S. member in the International Organization for Standardization
(1SO). IEC stands for the International Electrotechnical Commission.

The C standard is now maintained and developed by the ISO/IEC international standardization
working group for the C programming language, known as ISO/IEC JTC1/SC22/WG14, or WG14 for
short. The intent of the ISO C standard is to provide portability of conforming C programs to a wide
variety of operating systems, not only the UNIX System. This standard defines not only the syntax
and semantics of the programming language but also a standard library [Chapter 7 of 1ISO 1999;
Plauger 1992; Appendix B of Kernighan and Ritchie 1988]. This library is important because all
contemporary UNIX systems, such as the ones described in this book, provide the library routines
that are specified in the C standard.

In 1999, the ISO C standard was updated and approved as ISO/IEC 9899:1999, largely to improve
support for applications that perform numerical processing. The changes don't affect the POSIX
standards described in this book, except for the addition of the restri ct keyword to some of the
function prototypes. This keyword is used to tell the compiler which pointer references can be
optimized, by indicating that the object to which the pointer refers is accessed in the function only via
that pointer.

As with most standards, there is a delay between the standard's approval and the modification of
software to conform to it. As each vendor's compilation systems evolve, they add more support for
the latest version of the ISO C standard.

A summary of the current level of conformance of gcc to the 1999 version of the 1ISO C
standard is available at htt p: / / ww. gnu. or g/ sof t war e/ gcc/ c99st at us. ht i .

The I1SO C library can be divided into 24 areas, based on the headers defined by the standard. Figure
2.1 lists the headers defined by the C standard. The POSIX.1 standard includes these headers, as
well as others. We also list which of these headers are supported by the four implementations
(FreeBSD 5.2.1, Linux 2.4.22, Mac OS X 10.3, and Solaris 9) that are described later in this chapter.

Figure 2.1. Headers defined by the I1SO C standard
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10.3

Solaris
9

Description

<assert. h>

verify program assertion

<conpl ex. h>

complex arithmetic support

<ctype. h> - - - - character types

<errno. h> - - - - error codes (Section 1.7)
<f env. h> - - floating-point environment
<fl oat. h> - - - - floating-point constants

<inttypes. h>

integer type format conversion

<i s0646. h>

alternate relational operator macros

<limts. h>

implementation constants (Section
2.5)

<l ocal e. h>

locale categories

<mat h. h> - - - - mathematical constants
<setj np. h> - . - - nonlocal goto (Section 7.10)

<si gnal . h>

signals (Chapter 10)

<stdarg. h>

variable argument lists

<st dbool . h>

boolean type and values

<st ddef . h> - - - . standard definitions

<stdint.h> - - - integer types

<stdi o. h> - - . - standard 1/0 library (Chapter 5)
<stdlib. h> - - - - utility functions

<string. h>

string operations

<t gnmat h. h> - type-generic math macros
<time. h> - . - - time and date (Section 6.10)
<wchar . h> - . - - extended multibyte and wide

character support

<wct ype. h>

wide character classification and
mapping support

The ISO C headers depend on which version of the C compiler is used with the operating




system. When considering Figure 2.1, note that FreeBSD 5.2.1 ships with version 3.3.3 of gcc,
Solaris 9 ships with both version 2.95.3 and version 3.2 of gcc, Mandrake 9.2 (Linux 2.4.22)
ships with version 3.3.1 of gcc, and Mac OS X 10.3 ships with version 3.3 of gcc. Mac OS X also
includes older versions of gcc.

2.2.2. |[EEE POSIX

POSIX is a family of standards developed by the IEEE (Institute of Electrical and Electronics
Engineers). POSIX stands for Portable Operating System Interface. It originally referred only to the
IEEE Standard 1003.11988the operating system interfacebut was later extended to include many of
the standards and draft standards with the 1003 designation, including the shell and utilities
(1003.2).

Of specific interest to this book is the 1003.1 operating system interface standard, whose goal is to
promote the portability of applications among various UNIX System environments. This standard
defines the services that must be provided by an operating system if it is to be "POSIX compliant,"
and has been adopted by most computer vendors. Although the 1003.1 standard is based on the
UNIX operating system, the standard is not restricted to UNIX and UNIX-like systems. Indeed, some
vendors supplying proprietary operating systems claim that these systems have been made POSIX
compliant, while still leaving all their proprietary features in place.

Because the 1003.1 standard specifies an interface and not an implementation, no distinction is made
between system calls and library functions. All the routines in the standard are called functions.

Standards are continually evolving, and the 1003.1 standard is no exception. The 1988 version of this
standard, IEEE Standard 1003.11988, was modified and submitted to the International Organization
for Standardization. No new interfaces or features were added, but the text was revised. The
resulting document was published as IEEE Std 1003.11990 [IEEE 1990]. This is also the international
standard ISO/IEC 99451:1990. This standard is commonly referred to as POSIX.1, which we'll use in
this text.

The IEEE 1003.1 working group continued to make changes to the standard. In 1993, a revised
version of the IEEE 1003.1 standard was published. It included 1003.1-1990 standard and the
1003.1b-1993 real-time extensions standard. In 1996, the standard was again updated as
international standard ISO/IEC 99451:1996. It included interfaces for multithreaded programming,
called pthreads for POSIX threads. More real-time interfaces were added in 1999 with the publication
of IEEE Standard 1003.1d-1999. A year later, IEEE Standard 1003.1j-2000 was published, including
even more real-time interfaces, and IEEE Standard 1003.1g-2000 was published, adding event-
tracing extensions to the standard.

The 2001 version of 1003.1 departed from the prior versions in that it combined several 1003.1
amendments, the 1003.2 standard, and portions of the Single UNIX Specification (SUS), Version 2
(more on this later). The resulting standard, IEEE Standard 1003.1-2001, includes the following other
standards:

e ISO/IEC 9945-1 (IEEE Standard 1003.1-1996), which includes

o |EEE Standard 1003.1-1990



o |IEEE Standard 1003.1b-1993 (real-time extensions)

o IEEE Standard 1003.1c-1995 (pthreads)

o IEEE Standard 1003.1i-1995 (real-time technical corrigenda)
IEEE P1003.1a draft standard (system interface revision)
IEEE Standard 1003.1d-1999 (advanced real-time extensions)
IEEE Standard 1003.1j-2000 (more advanced real-time extensions)
IEEE Standard 1003.19-2000 (tracing)
IEEE Standard 1003.2d-1994 (batch extensions)
IEEE P1003.2b draft standard (additional utilities)
Parts of IEEE Standard 1003.1g-2000 (protocol-independent interfaces)
ISO/IEC 9945-2 (IEEE Standard 1003.2-1993)

The Base Specifications of the Single UNIX Specification, version 2, which include

o System Interface Definitions, Issue 5
o Commands and Utilities, Issue 5
o System Interfaces and Headers, Issue 5
Open Group Technical Standard, Networking Services, Issue 5.2

ISO/IEC 9899:1999, Programming Languages - C

Figure 2.2, Figure 2.3, and Figure 2.4 summarize the required and optional headers as specified by

POSIX.1. Because POSIX.1 includes the ISO C standard library functions, it also requires the headers
listed in Figure 2.1. All four figures summarize which headers are included in the implementations
discussed in this book.

Figure 2.2. Required headers defined by the POSIX standard

Header FreeBSD Linux Mac OS X | Solaris Description
5.2.1 2.4.22 10.3 9
<dirent. h> - - - - directory entries (Section 4.21)
<fentl. h> - - - - file control (Section 3.14)
<f nmat ch. h> - . - - filename-matching types
<gl ob. h> - . - - pathname pattern-matching types




Header FreeBSD Linux Mac OS X | Solaris Description
521 2.4.22 10.3 9
<grp. h> . . - . group file (Section 6.4)
<net db. h> o o o o network database operations
<pwd. h> - o o - password file (Section 6.2)
<regex. h> - - - - regular expressions
<tar. h> ] - - - tar archive values

<t erm os. h>

terminal 1/0 (Chapter 18)

<uni std. h>

symbolic constants

<uti ne. h>

file times (Section 4.19)

<wor dexp. h>

word-expansion types

<arpal/inet.h>

Internet definitions (Chapter 16)

<net/if.h>

socket local interfaces (Chapter 16)

<netinet/in.h>

Internet address family (Section
16.3)

<netinet/tcp. h>

Transmission Control Protocol
definitions

<sys/ mman. h>

memory management declarations

<sys/sel ect. h>

sel ect function (Section 14.5.1)

<sys/ socket . h>

sockets interface (Chapter 16)

<sys/stat.h>

file status (Chapter 4)

<sys/tinmes. h>

process times (Section 8.16)

<sys/types. h>

primitive system data types
(Section 2.8)

<sys/un. h>

UNIX domain socket definitions

(Section 17.3)

<sys/ ut snane. h>

system name (Section 6.9)

<sys/wai t. h>

process control (Section 8.6)

Figure 2.3. XSI extension headers defined by the POSIX standard




Header FreeBSD Linux Mac OS X | Solaris Description
5.2.1 2.4.22 10.3 9
<cpi 0. h> - - - cpi o archive values
<dl fcn. h> - . . . dynamic linking
<f mt nmsg. h> - - - message display structures
<ftw. h> - - file tree walking (Section 4.21)
<i conv. h> - - - codeset conversion utility

<l angi nf 0. h>

language information constants

<l i bgen. h>

definitions for pattern-matching
function

<monet ary. h>

monetary types

<ndbm h>

database operations

<nl _types. h>

message catalogs

<pol | . h>

poll function (Section 14.5.2)

<search. h>

search tables

<strings. h>

string operations

<sysl og. h>

system error logging (Section 13.4)

<ucont ext . h>

user context

<ulimt. h>

user limits

<ut npx. h>

user accounting database

<sys/ipc. h>

IPC (Section 15.6)

<sys/ nsg. h>

message queues (Section 15.7)

<sys/resource. h>

resource operations (Section 7.11)

<sys/sem h>

semaphores (Section 15.8)

<sys/ shm h>

shared memory (Section 15.9)

<sys/statvfs. h>

file system information

<sys/tinme. h>

time types

<sys/tinmeb. h>

additional date and time definitions

<sys/ ui 0. h>

vector 1/0 operations (Section

14.7)




Figure 2.4. Optional headers defined by the POSIX standard

Header FreeBSD Linux Mac OS X | Solaris Description
521 2.4.22 10.3 9
<ai 0. h> . - - - asynchronous 170
<myueue. h> . - message queues
<pt hr ead. h> - - . . threads (Chapters 11 and 12)
<sched. h> - - . . execution scheduling
<semaphor e. h> - - - -

semaphores

<spawn. h>

real-time spawn interface

<stropts. h>

XSI STREAMS interface (Section
14.4)

<trace. h>

event tracing

In this text we describe the 2001 version of POSIX.1, which includes the functions specified in the
ISO C standard. Its interfaces are divided into required ones and optional ones. The optional
interfaces are further divided into 50 sections, based on functionality. The sections containing
nonobsolete programming interfaces are summarized in Figure 2.5 with their respective option codes.
Option codes are two- to three-character abbreviations that help identify the interfaces that belong to
each functional area. The option codes highlight text on manual pages where interfaces depend on
the support of a particular option. Many of the options deal with real-time extensions.

Figure 2.5. POSIX.1 optional interface groups and codes

Code SUS Symbolic constant Description
mandatory
ADV _PCSI X_ADVI SORY_| NFO advisory information (real-time)
AlO _POSI X_ASYNCHRONOUS | O asynchronous input and output (real-
time)

BAR _POsI X_BARRI ERS barriers (real-time)
CPT _PGsI X_CPUTI ME process CPU time clocks (real-time)
CS _PCSI X_CLOCK_SELECTI ON clock selection (real-time)




SUS

Code mandatory Symbolic constant Description
CX - extension to ISO C standard
FSC . _ PGSl X_FSYNC file synchronization
IP6 _POCsI X_I PV6 IPv6 interfaces
MF - _POsI X_MAPPED FI LES memory-mapped files
ML _PCSI X_MEM_OCK process memory locking (real-time)
MLR _PCsI X_MEMLOCK_RANGE memory range locking (real-time)
MON _POsSI X_MONOTONI C_CLOCK monotonic clock (real-time)
MPR . _PCSI X_MEMORY_PROTECTI ON memory protection
MSG _POSI X_MESSAGE_PASSI NG message passing (real-time)
MX IEC 60559 floating-point option
P10 _PCSI X_PRIORITI ZED_| O prioritized input and output
PS _POSI X_PRI ORI TI ZED_SCHEDULI NG process scheduling (real-time)
RS _POsI X_RAW SOCKETS raw sockets
RTS _PCSI X_REALTI ME_SI GNALS real-time signals extension
SEM _PGCsI X_SEMAPHORES semaphores (real-time)
SHM _POSI X_SHARED MEMORY_OBJECTS shared memory objects (real-time)
SIO _PCSI X_SYNCHRONI ZED |1 O synchronized input and output (real-
time)
SPI _POSI X_SPI N_LOCKS spin locks (real-time)
SPN _POsI X_SPAWN spawn (real-time)
SS _PCSI X_SPORADI C_SERVER process sporadic server (real-time)
TCT _PCSI X_THREAD CPUTI ME thread CPU time clocks (real-time)
TEF _POSI X_TRACE_EVENT_FI LTER trace event filter
THR . _POCsI X_THREADS threads
TMO _PCsI X_TI MEQUTS timeouts (real-time)
TMR _PCsI X_TI MERS timers (real-time)




Code mar?;;[ory Symbolic constant Description
TPI _POSI X_THREAD PRI O | NHERI T thread priority inheritance (real-time)
TPP _POSI X_THREAD PRI O PROTECT thread priority protection (real-time)
TPS _PGsI X_THREAD_PRI ORI TY_SCHEDULI NG | thread execution scheduling (real-

time)

TRC _POSI X_TRACE trace
TRI _POSI X_TRACE_| NHERI T trace inherit
TRL _POSI X_TRACE _LOG trace log
TSA - _PCSI X_THREAD ATTR_STACKADDR thread stack address attribute
TSF - _PCSI X_THREAD_SAFE_FUNCTI ONS thread-safe functions
TSH o _POSI X_THREAD_ PRCCESS_SHARED thread process-shared synchronization
TSP _PCSI X_THREAD_SPORADI C_SERVER thread sporadic server (real-time)
TSS - _POSI X_THREAD_ATTR_STACKSI ZE thread stack address size
TYM _POSI X_TYPED_MEMORY_OBJECTS typed memory objects (real-time)
XSI - _XOPEN_UNI X X/Open extended interfaces
XSR _XOPEN_STREAMS XSI STREAMS

POSIX.1 does not include the notion of a superuser. Instead, certain operations require "appropriate
privileges,™ although POSIX.1 leaves the definition of this term up to the implementation. UNIX
systems that conform to the Department of Defense security guidelines have many levels of security.
In this text, however, we use the traditional terminology and refer to operations that require
superuser privilege.

After almost twenty years of work, the standards are mature and stable. The POSIX.1 standard is
maintained by an open working group known as the Austin Group

(htt p: // www. opengroup. or g/ austi n). To ensure that they are still relevant, the standards need to be
either updated or reaffirmed every so often.

2.2.3. The Single UNIX Specification

The Single UNIX Specification, a superset of the POSIX.1 standard, specifies additional interfaces that
extend the functionality provided by the basic POSIX.1 specification. The complete set of system
interfaces is called the X/Open System Interface (XSI). The _XOPEN_UNI X symbolic constant identifies
interfaces that are part of the XSl extensions to the base POSIX.1 interfaces.


http://www.opengroup.org/austin
http://www.opengroup.org/austin

The XSI also defines which optional portions of POSIX.1 must be supported for an implementation to
be deemed XSI conforming. These include file synchronization, memory-mapped files, memory
protection, and thread interfaces, and are marked in Figure 2.5 as "SUS mandatory." Only XSI-
conforming implementations can be called UNIX systems.

The Open Group owns the UNIX trademark and uses the Single UNIX Specification to define the
interfaces an implementation must support to call itself a UNIX system. Implementations must
file conformance statements, pass test suites that verify conformance, and license the right to
use the UNIX trademark.

Some of the additional interfaces defined in the XSI are required, whereas others are optional. The
interfaces are divided into option groups based on common functionality, as follows:

e Encryption: denoted by the XOPEN CRYPT symbolic constant

e Real-time: denoted by the _XOPEN_REALTI ME symbolic constant

e Advanced real-time

¢ Real-time threads: denoted by the _XOPEN_REALTI ME_THREADS symbolic constant
e Advanced real-time threads

e Tracing

e XSI| STREAMS: denoted by the _XOPEN STREAMs symbolic constant

e Legacy: denoted by the _XOPEN_LEGACY symbolic constant

The Single UNIX Specification (SUS) is a publication of The Open Group, which was formed in 1996 as
a merger of X/Open and the Open Software Foundation (OSF), both industry consortia. X/Open used
to publish the X/Open Portability Guide, which adopted specific standards and filled in the gaps where
functionality was missing. The goal of these guides was to improve application portability past what
was possible by merely conforming to published standards.

The first version of the Single UNIX Specification was published by X/Open in 1994. It was also
known as "Spec 1170," because it contained roughly 1,170 interfaces. It grew out of the Common
Open Software Environment (COSE) initiative, whose goal was to further improve application
portability across all implementations of the UNIX operating system. The COSE groupSun, I1BM, HP,
Novell/USL, and OSFwent further than endorsing standards. In addition, they investigated interfaces
used by common commercial applications. The resulting 1,170 interfaces were selected from these
applications, and also included the X/Open Common Application Environment (CAE), Issue 4 (known
as "XPG4" as a historical reference to its predecessor, the X/Open Portability Guide), the System V
Interface Definition (SVID), Edition 3, Level 1 interfaces, and the OSF Application Environment
Specification (AES) Full Use interfaces.

The second version of the Single UNIX Specification was published by The Open Group in 1997. The
new version added support for threads, real-time interfaces, 64-bit processing, large files, and
enhanced multibyte character processing.

The third version of the Single UNIX Specification (SUSv3, for short) was published by The Open
Group in 2001. The Base Specifications of SUSv3 are the same as the IEEE Standard 1003.1-2001
and are divided into four sections: Base Definitions, System Interfaces, Shell and Utilities, and



Rationale. SUSv3 also includes X/Open Curses Issue 4, Version 2, but this specification is not part of
POSIX.1.

In 2002, 1SO approved this version as International Standard ISO/IEC 9945:2002. The Open Group
updated the 1003.1 standard again in 2003 to include technical corrections, and 1SO approved this as
International Standard ISO/IEC 9945:2003. In April 2004, The Open Group published the Single UNIX
Specification, Version 3, 2004 Edition. It included more technical corrections edited in with the main
text of the standard.

2.2.4. FIPS

FIPS stands for Federal Information Processing Standard. It was published by the U.S. government,
which used it for the procurement of computer systems. FIPS 1511 (April 1989) was based on the
IEEE Std. 1003.11988 and a draft of the ANSI C standard. This was followed by FIPS 1512 (May
1993), which was based on the IEEE Standard 1003.11990. FIPS 1512 required some features that
POSIX.1 listed as optional. All these options have been included as mandatory in POSIX.1-2001.

The effect of the POSIX.1 FIPS was to require any vendor that wished to sell POSIX.1-compliant
computer systems to the U.S. government to support some of the optional features of POSIX.1. The
POSIX.1 FIPS has since been withdrawn, so we won't consider it further in this text.
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2.3. UNIX System Implementations

The previous section described ISO C, IEEE POSIX, and the Single UNIX Specification; three
standards created by independent organizations. Standards, however, are interface specifications.
How do these standards relate to the real world? These standards are taken by vendors and turned
into actual implementations. In this book, we are interested in both these standards and their
implementation.

Section 1.1 of McKusick et al. [1996] gives a detailed history (and a nice picture) of the UNIX System
family tree. Everything starts from the Sixth Edition (1976) and Seventh Edition (1979) of the UNIX
Time-Sharing System on the PDP-11 (usually called Version 6 and Version 7). These were the first
releases widely distributed outside of Bell Laboratories. Three branches of the tree evolved.

1. One at AT&T that led to System |1l and System V, the so-called commercial versions of the
UNIX System.

2. One at the University of California at Berkeley that led to the 4.xBSD implementations.

3. The research version of the UNIX System, developed at the Computing Science Research Center
of AT&T Bell Laboratories, that led to the UNIX Time-Sharing System 8th Edition, 9th Edition,
and ended with the 10th Edition in 1990.

2.3.1. UNIX System V Release 4

UNIX System V Release 4 (SVR4) was a product of AT&T's UNIX System Laboratories (USL, formerly
AT&T's UNIX Software Operation). SVR4 merged functionality from AT&T UNIX System V Release 3.2
(SVR3.2), the SunOS operating system from Sun Microsystems, the 4.3BSD release from the
University of California, and the Xenix system from Microsoft into one coherent operating system.
(Xenix was originally developed from Version 7, with many features later taken from System V.) The
SVR4 source code was released in late 1989, with the first end-user copies becoming available during
1990. SVR4 conformed to both the POSIX 1003.1 standard and the X/Open Portability Guide, Issue 3
(XPG3).

AT&T also published the System V Interface Definition (SVID) [AT&T 1989]. Issue 3 of the SVID
specified the functionality that an operating system must offer to qualify as a conforming
implementation of UNIX System V Release 4. As with POSIX.1, the SVID specified an interface, not
an implementation. No distinction was made in the SVID between system calls and library functions.
The reference manual for an actual implementation of SVR4 must be consulted to see this distinction

[AT&T 1990e].

2.3.2.44BSD



The Berkeley Software Distribution (BSD) releases were produced and distributed by the Computer
Systems Research Group (CSRG) at the University of California at Berkeley; 4.2BSD was released in
1983 and 4.3BSD in 1986. Both of these releases ran on the VAX minicomputer. The next release,
4.3BSD Tahoe in 1988, also ran on a particular minicomputer called the Tahoe. (The book by Leffler
et al. [1989] describes the 4.3BSD Tahoe release.) This was followed in 1990 with the 4.3BSD Reno
release; 4.3BSD Reno supported many of the POSIX.1 features.

The original BSD systems contained proprietary AT&T source code and were covered by AT&T
licenses. To obtain the source code to the BSD system you had to have a UNIX source license from
AT&T. This changed as more and more of the AT&T source code was replaced over the years with
non-AT&T source code and as many of the new features added to the Berkeley system were derived
from non-AT&T sources.

In 1989, Berkeley identified much of the non-AT&T source code in the 4.3BSD Tahoe release and
made it publicly available as the BSD Networking Software, Release 1.0. This was followed in 1991
with Release 2.0 of the BSD Networking Software, which was derived from the 4.3BSD Reno release.
The intent was that most, if not all, of the 4.4BSD system would be free of any AT&T license
restrictions, thus making the source code available to all.

4.4BSD-Lite was intended to be the final release from the CSRG. Its introduction was delayed,
however, because of legal battles with USL. Once the legal differences were resolved, 4.4BSD-Lite
was released in 1994, fully unencumbered, so no UNIX source license was needed to receive it. The
CSRG followed this with a bug-fix release in 1995. This release, 4.4BSD-Lite, release 2, was the final
version of BSD from the CSRG. (This version of BSD is described in the book by McKusick et al.

[1996].)

The UNIX system development done at Berkeley started with PDP-11s, then moved to the VAX
minicomputer, and then to other so-called workstations. During the early 1990s, support was
provided to Berkeley for the popular 80386-based personal computers, leading to what is called
386BSD. This was done by Bill Jolitz and was documented in a series of monthly articles in Dr. Dobb's
Journal throughout 1991. Much of this code appears in the BSD Networking Software, Release 2.0.

2.3.3. FreeBSD

FreeBSD is based on the 4.4BSD-Lite operating system. The FreeBSD project was formed to carry on
the BSD line after the Computing Science Research Group at the University of California at Berkeley
decided to end its work on the BSD versions of the UNIX operating system, and the 386BSD project
seemed to be neglected for too long.

All software produced by the FreeBSD project is freely available in both binary and source forms. The
FreeBSD 5.2.1 operating system was one of the four used to test the examples in this book.

Several other BSD-based free operating systems are available. The NetBSD project

(http: // wwv. net bsd. or g) is similar to the FreeBSD project, with an emphasis on portability
between hardware platforms. The OpenBSD project (htt p: // www. openbsd. or g) is similar to
FreeBSD but with an emphasis on security.

2.3.4. Linux


http://www.netbsd.org
http://www.openbsd.org

Linux is an operating system that provides a rich UNIX programming environment, and is freely
available under the GNU Public License. The popularity of Linux is somewhat of a phenomenon in the
computer industry. Linux is distinguished by often being the first operating system to support new
hardware.

Linux was created in 1991 by Linus Torvalds as a replacement for MINIX. A grass-roots effort then
sprang up, whereby many developers across the world volunteered their time to use and enhance it.

The Mandrake 9.2 distribution of Linux was one of the operating systems used to test the examples
in this book. That distribution uses the 2.4.22 version of the Linux operating system kernel.

2.3.5. Mac OS X

Mac OS X is based on entirely different technology than prior versions. The core operating system is
called "Darwin," and is based on a combination of the Mach kernel (Accetta et al. [1986]) and the
FreeBSD operating system. Darwin is managed as an open source project, similar to FreeBSD and
Linux.

Mac OS X version 10.3 (Darwin 7.4.0) was used as one of the operating systems to test the examples
in this book.

2.3.6. Solaris

Solaris is the version of the UNIX System developed by Sun Microsystems. It is based on System V
Release 4, with more than ten years of enhancements from the engineers at Sun Microsystems. It is
the only commercially successful SVR4 descendant, and is formally certified to be a UNIX system.
(For more information on UNIX certification, see

ht t p: / / www. opengr oup. org/ certification/idx/unix.htm.)

The Solaris 9 UNIX system was one of the operating systems used to test the examples in this book.

2.3.7. Other UNIX Systems

Other versions of the UNIX system that have been certified in the past include

AlX, IBM's version of the UNIX System

HP-UX, Hewlett-Packard's version of the UNIX System

IRIX, the UNIX System version shipped by Silicon Graphics

UnixWare, the UNIX System descended from SVR4 and currently sold by SCO

=TT e rrev | nexr
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2.4. Relationship of Standards and Implementations

The standards that we've mentioned define a subset of any actual system. The focus of this book is
on four real systems: FreeBSD 5.2.1, Linux 2.4.22, Mac OS X 10.3, and Solaris 9. Although only
Solaris can call itself a UNIX system, all four provide a UNIX programming environment. Because all
four are POSIX compliant to varying degrees, we will also concentrate on the features that are
required by the POSIX.1 standard, noting any differences between POSIX and the actual
implementations of these four systems. Those features and routines that are specific to only a
particular implementation are clearly marked. As SUSv3 is a superset of POSIX.1, we'll also note any
features that are part of SUSv3 but not part of POSIX.1.

Be aware that the implementations provide backward compatibility for features in earlier releases,
such as SVR3.2 and 4.3BSD. For example, Solaris supports both the POSIX.1 specification for
nonblocking 170 (O NONBLOCK) and the traditional System V method (O_NDELAY). In this text, we'll use
only the POSIX.1 feature, although we'll mention the nonstandard feature that it replaces. Similarly,
both SVR3.2 and 4.3BSD provided reliable signals in a way that differs from the POSIX.1 standard. In
Chapter 10 we describe only the POSIX.1 signal mechanism.

=T=T @ prcy | nexr »



=TeTe e prev | nexr o

2.5. Limits

The implementations define many magic numbers and constants. Many of these have been hard
coded into programs or were determined using ad hoc techniques. With the various standardization
efforts that we've described, more portable methods are now provided to determine these magic
numbers and implementation-defined limits, greatly aiding the portability of our software.

Two types of limits are needed:

1. Compile-time limits (e.g., what's the largest value of a short integer?)
2. Runtime limits (e.g., how many characters in a filename?)

Compile-time limits can be defined in headers that any program can include at compile time. But
runtime limits require the process to call a function to obtain the value of the limit.

Additionally, some limits can be fixed on a given implementationand could therefore be defined
statically in a headeryet vary on another implementation and would require a runtime function call.
An example of this type of limit is the maximum number of characters in a filename. Before SVR4,
System V historically allowed only 14 characters in a filename, whereas BSD-derived systems
increased this number to 255. Most UNIX System implementations these days support multiple file
system types, and each type has its own limit. This is the case of a runtime limit that depends on
where in the file system the file in question is located. A filename in the root file system, for example,
could have a 14-character limit, whereas a filename in another file system could have a 255-
character limit.

To solve these problems, three types of limits are provided:

1. Compile-time limits (headers)
2. Runtime limits that are not associated with a file or directory (the sysconf function)

3. Runtime limits that are associated with a file or a directory (the pat hconf and f pat hconf
functions)

To further confuse things, if a particular runtime limit does not vary on a given system, it can be
defined statically in a header. If it is not defined in a header, however, the application must call one
of the three conf functions (which we describe shortly) to determine its value at runtime.

2.5.1. ISO C Limits

All the limits defined by ISO C are compile-time limits. Figure 2.6 shows the limits from the C
standard that are defined in the file <l i nmi t s. h>. These constants are always defined in the header



and don't change in a given system. The third column shows the minimum acceptable values from
the I1SO C standard. This allows for a system with 16-bit integers using one's-complement arithmetic.
The fourth column shows the values from a Linux system with 32-bit integers using two's-
complement arithmetic. Note that none of the unsigned data types has a minimum value, as this
value must be O for an unsigned data type. On a 64-bit system, the values for | ong integer
maximums match the maximum values for | ong | ong integers.

Figure 2.6. Sizes of integral values from <linits. h>

Name Description Minimum acceptable value Typical value

CHAR BI'T bits in a char 8 8

CHAR_MAX max value of char (see later) 127

CHAR_M N min value of char (see later) 128

SCHAR_MAX | max value of si gned 127 127
char

SCHAR_M N | min value of si gned 127 128
char

UCHAR_MAX | max value of unsi gned 255 255
char

I NT_MAX max value of i nt 32,767 2,147,483,647

INT_M N min value of i nt 32,767 2,147,483,648

Ul NT_MAX max value of unsi gned 65,535 4,294,967,295
int

SHRT_M N min value of short 32,767 32,768

SHRT_MAX max value of short 32,767 32,767

USHRT_MAX | max value of unsi gned 65,535 65,535
short

LONG_MAX max value of | ong 2,147,483,647 2,147,483,647

LONG M N min value of | ong 2,147,483,647 2,147,483,648

ULONG_MAX | max value of unsi gned 4,294,967,295 4,294,967,295
| ong

LLONG_MAX | max value of | ong | ong 9,223,372,036,854,775,807 | 9,223,372,036,854,775,807

LLONG_ M N | min value of | ong | ong 9,223,372,036,854,775,807 | 9,223,372,036,854,775,808

ULLONG_MAX | max value of unsi gned 18,446,744,073,709,551,615 | 18,446,744,073,709,551,615
[ ong | ong




Name Description Minimum acceptable value Typical value

MB_LEN_MAX | max number of bytes in 1 16
a multibyte character
constant

One difference that we will encounter is whether a system provides signed or unsigned character
values. From the fourth column in Figure 2.6, we see that this particular system uses signed
characters. We see that CHAR_M N equals SCHAR_M N and that CHAR_MAX equals SCHAR MAX. If the
system uses unsigned characters, we would have CHAR M N equal to 0 and CHAR MAX equal to
UCHAR_NAX.

The floating-point data types in the header <f | oat . h> have a similar set of definitions. Anyone doing
serious floating-point work should examine this file.

Another I1SO C constant that we'll encounter is FOPEN_MAX, the minimum number of standard 1/0
streams that the implementation guarantees can be open at once. This value is in the <st di 0. h>
header, and its minimum value is 8. The POSIX.1 value STREAM MAX, if defined, must have the same
value as FOPEN_MAX.

ISO C also defines the constant TMP_MAX in <st di 0. h>. It is the maximum number of unique filenames
generated by the t rpnamfunction. We'll have more to say about this constant in Section 5.13.

In Figure 2.7, we show the values of FOPEN_MAX and TMP_MAX on the four platforms we discuss in this
book.

Figure 2.7. ISO limits on various platforms

Limit FreeBSD Linux Mac OS X Solaris
5.2.1 2.4.22 10.3 9

FOPEN_MAX 20 16 20 20

TVP_VAX 308,915,776 238,328 | 308,915,776 | 17,576

ISO C also defines the constant FI LENAVE_MAX, but we avoid using it, because some operating
system implementations historically have defined it to be too small to be of use.

2.5.2. POSIX Limits

POSIX.1 defines numerous constants that deal with implementation limits of the operating system.
Unfortunately, this is one of the more confusing aspects of POSIX.1. Although POSIX.1 defines
numerous limits and constants, we'll only concern ourselves with the ones that affect the base
POSIX.1 interfaces. These limits and constants are divided into the following five categories:



1. Invariant minimum values: the 19 constants in Figure 2.8

2. Invariant value: SSI ZE_NAX

3. Runtime increasable values: CHARCLASS NAME MAX, COLL_WEI GHTS MAX, LI NE_NMAX, NGROUPS MAX,

and RE_DUP_NAX

4. Runtime invariant values, possibly indeterminate: ARG _MAX, CHI LD _MAX, HOST_NAME_MAX,

LOG N_NAME_MAX, OPEN_MAX, PAGESI ZE, RE_DUP_MAX, STREAM MAX, SYMLOOP_MAX, TTY_NAME_MAX, and

TZNAME_MAX

5. Pathname variable values, possibly indeterminate: FI LESI ZEBI TS, LI NK_MAX, MAX_CANCN,

MAX_| NPUT, NAMVE_NMAX, PATH_MAX, Pl PE_BUF, and SYM.I NK_MAX

Figure 2.8. POSIX.1 invariant minimum values from <l inits. h>

Name Description: minimum acceptable value for Value

_PCSI X_ARG_NMAX length of arguments to exec functions 4,096

_PCSI X_CHI LD_MAX number of child processes per real user ID 25

_POSI X_HOST_NAME_MAX maximum length of a host name as returned by 255
get host name

_POSI X_LI NK_MAX number of links to a file 8

_PCOSI X_LOG N_NAME_MAX maximum length of a login name 9

_POSI X_MAX_CANON number of bytes on a terminal’'s canonical input 255
queue

_PGsI X_MAX_I NPUT space available on a terminal’s input queue 255

_POSI X_NAVE_MAX number of bytes in a filename, not including the 14
terminating null

_POSI X_NGROUPS_MAX number of simultaneous supplementary group IDs 8
per process

_PGSI X_OPEN_MAX number of open files per process 20

_PCSI X_PATH_MAX number of bytes in a pathname, including the 256
terminating null

_PCsI X_PI PE_BUF number of bytes that can be written atomically to 512
a pipe

_PCSI X_RE_DUP_NMAX number of repeated occurrences of a basic regular 255

expression permitted by the r egexec and regconp
functions when using the interval notation \ {m n\}




Name Description: minimum acceptable value for Value

_POSI X_SSI ZE_MAX value that can be stored in ssi ze_t object 32,767

_PCSI X_STREAM _NMAX number of standard 1/0 streams a process can 8
have open at once

_PCOSI X_SYM_I NK_VAX number of bytes in a symbolic link 255

_PCOSI X_SYM_OOP_VAX number of symbolic links that can be traversed 8

during pathname resolution

_POSI X_TTY_NANME_NMAX length of a terminal device name, including the 9
terminating null

_POSI X_TZNAVE_NMAX number of bytes for the name of a time zone 6

Of these 44 limits and constants, some may be defined in <l i m ts. h>, and others may or may not be
defined, depending on certain conditions. We describe the limits and constants that may or may not
be defined in Section 2.5.4, when we describe the sysconf, pat hconf , and f pat hconf functions. The
19 invariant minimum values are shown in Figure 2.8.

These values are invariant; they do not change from one system to another. They specify the most
restrictive values for these features. A conforming POSIX.1 implementation must provide values that
are at least this large. This is why they are called minimums, although their names all contain MAX.
Also, to ensure portability, a strictly-conforming application must not require a larger value. We
describe what each of these constants refers to as we proceed through the text.

A strictly-conforming POSIX application is different from an application that is merely POSIX
conforming. A POSIX-conforming application uses only interfaces defined in IEEE Standard
1003.1-2001. A strictly-conforming application is a POSIX-conforming application that does not
rely on any undefined behavior, does not use any obsolescent interfaces, and does not require
values of constants larger than the minimums shown in Figure 2.8.

Unfortunately, some of these invariant minimum values are too small to be of practical use. For
example, most UNIX systems today provide far more than 20 open files per process. Also, the
minimum limit of 255 for _POSI X_PATH_MAX is too small. Pathnames can exceed this limit. This means
that we can't use the two constants _POSI X_OPEN_MAX and _PCOSI X_PATH_MAX as array sizes at compile
time.

Each of the 19 invariant minimum values in Figure 2.8 has an associated implementation value whose
name is formed by removing the POSI X_prefix from the name in Figure 2.8. The names without the
leading _PGCsI X_ were intended to be the actual values that a given implementation supports. (These
19 implementation values are items 25 from our list earlier in this section: the invariant value, the
runtime increasable value, the runtime invariant values, and the pathname variable values.) The
problem is that not all of the 19 implementation values are guaranteed to be defined in the

<l'imts. h> header.

For example, a particular value may not be included in the header if its actual value for a given
process depends on the amount of memory on the system. If the values are not defined in the
header, we can't use them as array bounds at compile time. So, POSIX.1 decided to provide three
runtime functions for us to callsysconf, pat hconf , and f pat hconf to determine the actual



implementation value at runtime. There is still a problem, however, because some of the values are
defined by POSIX.1 as being possibly "indeterminate” (logically infinite). This means that the value
has no practical upper bound. On Linux, for example, the number of i ovec structures you can use
with readv or wri tev is limited only by the amount of memory on the system. Thus, | OV_MAX is
considered indeterminate on Linux. We'll return to this problem of indeterminate runtime limits in

Section 2.5.5.

2.5.3. XSI Limits

The XSI also defines constants that deal with implementation limits. They include:

1. Invariant minimum values: the ten constants in Figure 2.9

2. Numerical limits: LONG BI T and WORD BI T

3. Runtime invariant values, possibly indeterminate: ATEXI T_MAX, | OV_MAX, and PAGE_SI ZE

Figure 2.9. XSI invariant minimum values from <linits. h>

Name Description Minimum Typical value
P acceptable value yp

NL_ ARGVAX maximum value of digit in calls to 9 9
printf and scanf

NL_ LANGVAX maximum number of bytes in 14 14
LANG environment variable

NL_ MSGVAX maximum message number 32,767 32,767

NL_ NMVAX maximum number of bytes in N- (none specified) 1
to-1 mapping characters

NL_ SETMAX maximum set number 255 255

NL_TEXTMAX maximum number of bytes in a _PGsI X2_LI NE_MAX 2,048
message string

NZERO default process priority 20 20

_XOPEN_| OV_NAX maximum number of i ovec 16 16
structures that can be used with
readv or writev

_ XOPEN_NANE_NMAX number of bytes in a filename 255 255

_XOPEN_PATH_MAX number of bytes in a pathname 1,024 1,024




The invariant minimum values are listed in Figure 2.9. Many of these values deal with message
catalogs. The last two illustrate the situation in which the POSIX.1 minimums were too
smallpresumably to allow for embedded POSIX.1 implementationsso the Single UNIX Specification
added symbols with larger minimum values for XSlI-conforming systems.

2.5.4. sysconf, pat hconf, and f pat hconf Functions

We've listed various minimum values that an implementation must support, but how do we find out
the limits that a particular system actually supports? As we mentioned earlier, some of these limits
might be available at compile time; others must be determined at runtime. We've also mentioned
that some don't change in a given system, whereas others can change because they are associated
with a file or directory. The runtime limits are obtained by calling one of the following three functions.

#i ncl ude <unistd. h>
| ong sysconf (i nt name);
| ong pat hconf (const char *pathname, int name);

[ ong fpathconf(int filedes, int name);

All three return: corresponding value if OK, 1 on error (see later)

The difference between the last two functions is that one takes a pathname as its argument and the
other takes a file descriptor argument.

Figure 2.10 lists the name arguments that sysconf uses to identify system limits. Constants
beginningwith _SC are used as arguments to sysconf to identify the runtime limit. Figure 2.11 lists
the name arguments that are used by pat hconf and f pat hconf to identify system limits. Constants
beginningwith _PC_are used as arguments to pat hconf and f pat hconf to identify the runtime limit.

Figure 2.10. Limits and name arguments to sysconf

Name of limit Description name argument

ARG _NVAX maximum length, in bytes, of arguments to the _SC_ARG_MAX
exec functions

ATEXI T_MAX maximum number of functions that can be _SC ATEXI T_MAX
registered with the at exi t function




Name of limit Description name argument
CHI LD_MAX maximum number of processes per real user 1D _SC CHI LD _MAX
clock ticks/second number of clock ticks per second _SC CLK _TCK

COLL_VEI GHTS_MAX

maximum number of weights that can be
assigned to an entry of the LC_COLLATE order
keyword in the locale definition file

_SC_COLL_WEI GHTS_MAX

HOST_NAVE_MAX

maximum length of a host name as returned by
get host name

_SC_HOST_NAME_MAX

| OV_NAX maximum number of i ovec structures that can _SC | Ov_MAX
be used with readv or wi tev
LI NE_NMAX maximum length of a utility's input line _SC LI NE_NMAX

LOG N_NAME_MAX

maximum length of a login name

_SC_LOG N_NAME_MAX

NGROUPS_MAX maximum number of simultaneous _SC_NGROUPS_NMAX
supplementary process group IDs per process
OPEN_MAX maximum number of open files per process _SC_OPEN_MAX
PAGESI ZE system memory page size, in bytes _SC_PAGESI ZE
PAGE_SI ZE system memory page size, in bytes _SC _PAGE_SI ZE
RE_DUP_MAX number of repeated occurrences of a basic _SC RE_DUP_NAX
regular expression permitted by the r egexec and
r egconp functions when using the interval
notation\{mn\}
STREAM NMAX maximum number of standard 1/0 streams per _SC_STREAM NMAX
process at any given time; if defined, it must
have the same value as FOPEN_MAX
SYMLOOP_MAX number of symbolic links that can be traversed _SC _SYM_OOP_NMAX
during pathname resolution
TTY_NAME_NMAX length of a terminal device name, including the _SC TTY_NAME_MAX
terminating null
TZNAVE_NVAX maximum number of bytes for the name of a _SC_TZNAME_NMAX

time zone

Figure 2.11. Limits and name arguments to pat hconf and f pat hconf




Name of limit Description name argument

FI LESI ZEBI TS minimum number of bits needed to represent, _PC_FI LESI ZEBI TS
as a signed integer value, the maximum size of
a regular file allowed in the specified directory

LI NK_MAX maximum value of a file's link count _PC_LI NK_MAX

MAX_CANON maximum number of bytes on a terminal's _PC_AX_CANON
canonical input queue

MAX_ | NPUT number of bytes for which space is available on | _PC_MAX_| NPUT
terminal's input queue

NANME_VAX maximum number of bytes in a filename (does _PC_NAME_MAX
not include a null at end)

PATH_NMAX maximum number of bytes in a relative _PC_PATH_MAX
pathname, including the terminating null

Pl PE_BUF maximum number of bytes that can be written _PC_PI PE_BUF
atomically to a pipe

SYMLI NK_MAX number of bytes in a symbolic link _PC_SYM.I NK_MAX

We need to look in more detail at the different return values from these three functions.

1. All three functions return 1 and set errno to El NVAL if the name isn't one of the appropriate
constants. The third column in Figures 2.10 and 2.11 lists the limit constants we'll deal with
throughout the rest of this book.

2. Some names can return either the value of the variable (a return value = 0) or an indication
that the value is indeterminate. An indeterminate value is indicated by returning 1 and not
changing the value of errno.

3. The value returned for _SC CLK TCK is the number of clock ticks per second, for use with the
return values from the ti mes function (Section 8.16).

There are some restrictions for the pathname argument to pat hconf and the filedes argument to
f pat hconf . If any of these restrictions isn't met, the results are undefined.

1. The referenced file for _PC_MAX_CANON and _PC MAX | NPUT must be a terminal file.

2. The referenced file for _PC LI NK_MAX can be either a file or a directory. If the referenced file is a
directory, the return value applies to the directory itself, not to the filename entries within the
directory.

3. The referenced file for _PC FI LESI ZEBI TS and _PC_NAME_NMAX must be a directory. The return
value applies to filenames within the directory.



4. The referenced file for _PC_PATH_MAX must be a directory. The value returned is the maximum
length of a relative pathname when the specified directory is the working directory.
(Unfortunately, this isn't the real maximum length of an absolute pathname, which is what we
want to know. We'll return to this problem in Section 2.5.5.)

5. The referenced file for _PC_PI PE_BUF must be a pipe, FIFO, or directory. In the first two cases
(pipe or FIFO) the return value is the limit for the referenced pipe or FIFO. For the other case (a
directory) the return value is the limit for any FIFO created in that directory.

6. The referenced file for _PC_SYM.I NK_MAX must be a directory. The value returned is the
maximum length of the string that a symbolic link in that directory can contain.

Example

The awk (1) program shown in Figure 2.12 builds a C program that prints the value of each pat hconf
and sysconf symbol.

The awk program reads two input filespat hconf. symand sysconf . synthat contain lists of the limit
name and symbol, separated by tabs. All symbols are not defined on every platform, so the awk
program surrounds each call to pat hconf and sysconf with the necessary #i f def statements.

For example, the awk program transforms a line in the input file that looks like

NAVE_MAX _PC_NAME_MAX

into the following C code:

#i f def NAME_MAX
printf("NAVE_MAX is defined to be %\ n", NAVE_MAX+0);

#el se
printf("no synbol for NAME MAX\n");
#endi f
#i fdef _PC_NAME MAX
pr _pat hconf ("NAME_MAX =", argv[1l], _PC NAME NMAX);
#el se
printf("no synbol for _PC NAME MAX\n");
#endi f

The program in Figure 2.13, generated by the awk program, prints all these limits, handling the case
in which a limit is not defined.

Figure 2.14 summarizes results from Figure 2.13 for the four systems we discuss in this book. The
entry "no symbol" means that the system doesn't provide a corresponding _SCor _PC symbol to
query the value of the constant. Thus, the limit is undefined in this case. In contrast, the entry
"unsupported" means that the symbol is defined by the system but unrecognized by the sysconf or



pat hconf functions. The entry "no limit" means that the system defines no limit for the constant, but
this doesn't mean that the limit is infinite.

We'll see in Section 4.14 that UFS is the SVR4 implementation of the Berkeley fast file system. PCFS
is the MS-DOS FAT file system implementation for Solaris.

Figure 2.12. Build C program to print all supported configuration limits

BEG N {
printf("#include \"apue.h\"\n")
printf("#include <errno.h>\n")
printf("#include <limts.h>\n")
printf("\n")
printf("static void pr_sysconf(char *, int);\n")
printf("static void pr_pathconf(char *, char *, int);\n")
printf("\n")
printf("int\n")
printf("min(int argc, char *argv[])\n")
printf("{\n")
printf("\tif (argc !'= 2)\n")
printf("\t\terr_quit(\"usage: a.out <dirnane>\");\n\n")
FS="\t +"
while (getline <"sysconf.synl > 0) {
printf("#i fdef %\n", $1)
printf("\tprintf(\"% defined to be %®a@\\n\", %+0);\n", $1, $1)
printf("#el se\n")
printf("\tprintf(\"no synbol for %\\n\");\n", $1)
printf("#endif\n")
printf("#i fdef %\n", $2)
printf("\tpr_sysconf(\"% =\", %);\n", $1, $2)
printf("#else\n")
printf(“\tprintf(\"no synbol for %\\n\");\n", $2)
printf("#endif\n")
}
cl ose("sysconf.syni)
while (getline <"pathconf.sym' > 0) {
printf("#i fdef %\n", $1)
printf("\tprintf(\"% defined to be %®a@\\n\", %+0);\n", $1, $1)
printf("#el se\n")
printf("\tprintf(\"no synbol for %\\n\");\n", $1)
printf("#endif\n")
printf("#i fdef %\n", $2)
printf("\tpr_pathconf(\"% =\", argv[1l], %);\n", $1, $2)
printf("#else\n")
printf("\tprintf(\"no synbol for %\\n\");\n", $2)
printf("#endif\n")

}
cl ose("pat hconf.syni")
exi t



END {
printf("\texit(0);\n")
printf("}\n\n")
printf("static void\n")
printf("pr_sysconf(char *mesg, int nane)\n")
printf("{\n")
printf("\tlong val;\n\n")
printf("\tfputs(nesg, stdout);\n")
printf("\terrno = 0;\n")
printf("\tif ((val = sysconf(nanme)) < 0) {\n")
printf("\t\tif (errno !'=0) {\n")
printf("\t\t\tif (errno == EINVAL)\ n")
printf("\t\t\t\tfputs(\" (not supported)\\n\", stdout);\n")
printf("\t\t\tel se\n")
printf("\t\t\t\terr_sys(\"sysconf error\");\n")
printf("\t\t} else {\n")
printf("\t\t\tfputs(\" (no limt)\\n\", stdout);\n")
printf("\t\t}\n")
printf("\t} else {\n")
printf("\t\tprintf(\" 9@ d\\n\", val);\n")
printf("\t}\n")
printf("}\n\n")
printf("static void\n")
printf("pr_pathconf(char *nesg, char *path, int name)\n")
printf("{\n")
printf("\tlong val;\n")
printf("\n")
printf("\tfputs(nesg, stdout);\n")
printf("\terrno = 0;\n")
printf("\tif ((val = pathconf(path, nanme)) < 0) {\n")
printf("\t\tif (errno !'=0) {\n")
printf("\t\t\tif (errno == EINVAL)\n")
printf("\t\t\t\tfputs(\" (not supported)\\n\", stdout);\n")
printf("\t\t\tel se\n")
printf("\t\t\t\terr_sys(\"pathconf error, path = %s\", path);\n")
printf("\t\t} else {\n")
printf("\t\t\tfputs(\" (no limt)\\n\", stdout);\n")
printf("\t\t}\n")
printf("\t} else {\n")
printf("\t\tprintf(\" 9@ d\\n\", val);\n")
printf("\t}\n")
printf("}\n")

Figure 2.13. Print all possible sysconf and pat hconf values

#i ncl ude "apue. h"
#i ncl ude <errno. h>



#include <limts.h>

static void pr_sysconf(char *, int);
static void pr_pathconf(char *, char *, int);

i nt
mai n(int argc, char *argv[])
{
if (argc = 2)
err_quit("usage: a.out <dirname>");

#i f def ARG_MAX

printf("ARG MAX defined to be %\ n", ARG MAX+0);
#el se

printf("no synmbol for ARG MAX\n");

#endi f
#i fdef _SC ARG MAX

pr_sysconf ("ARG MAX =", SC ARG MAX);
#el se

printf("no symbol for _SC ARG MAX\n");
#endi f

/* simlar processing for all the rest of the sysconf synbols..

#i f def MAX_CANON

printf("MAX_CANON defined to be %\ n", MAX_CANON+O);
#el se

printf("no synbol for MAX_CANOM n");

#endi f
#i fdef _PC_MAX_ CANON
pr_pat hconf (" MAX CANON =", argv[1l], _PC MAX CANON);
#el se
printf("no synmbol for _PC MAX CANON\ n");
#endi f

/* simlar processing for all the rest of the pathconf synbols..

exit(0);
}
static void
pr_sysconf (char *nesg, int nane)
{

| ong val ;

f put s(nesg, stdout);
errno = O;
if ((val = sysconf(nane)) < 0) {
if (errno !'=0) {
if (errno == EI NVAL)
fputs(" (not supported)\n", stdout);
el se
err_sys("sysconf error");

*/

*/



} else {

fputs(™ (no limt)\n", stdout);
}
} else {
printf(" %d\n", val);
}
}
static void
pr_pat hconf(char *nesg, char *path, int nane)
{
| ong val ;
f puts(nmesg, stdout);
errno = 0;
if ((val = pathconf(path, nanme)) < 0) {
if (errno !'=0) {
if (errno == EINVAL)
fputs("™ (not supported)\n", stdout);
el se
err_sys("pathconf error, path = %", path);
} else {
fputs(" (no limt)\n", stdout);
}
} else {
printf(" %d\n", val);
}
}
Figure 2.14. Examples of configuration limits
Solaris 9
. FreeBSD . Mac OS X
Limit 521 Linux 2.4.22 103 UES file PCES file
system system
ARG_NMAX 65,536 131,072 262,144 1,048,320 1,048,320
ATEXI T_MAX 32 | 2,147,483,647 no symbol no limit no limit
CHARCLASS_NANME_MAX no symbol 2,048 no symbol 14 14
CHI LD_MAX 867 999 100 7,877 7,877
clock ticks/second 128 100 100 100 100
COLL_VEI GATS_MAX 0 255 2 10 10
FI LESI ZEBI TS unsupported 64 no symbol 41 | unsupported




Solaris 9
Limit Frg_‘ffD Linux 2.4.22 Mafo(.)ss X UFS file PCES file
system system
HOST_NANVE_MAX 255 unsupported no symbol no symbol no symbol
| OV_NMAX 1,024 no limit no symbol 16 16
LI NE_MAX 2,048 2,048 2,048 2,048 2,048
LI NK_MAX 32,767 32,000 32,767 32,767 1
LOG N_NAVE_NMAX 17 256 no symbol 9 9
MAX_CANON 255 255 255 256 256
MAX_| NPUT 255 255 255 512 512
NAVE_MAX 255 255 765 255 8
NGROUPS_MVAX 16 32 16 16 16
OPEN_MAX 1,735 1,024 256 256 256
PAGESI ZE 4,096 4,096 4,096 8,192 8,192
PAGE_SI ZE 4,096 4,096 no symbol 8,192 8,192
PATH_VAX 1,024 4,096 1,024 1,024 1,024
Pl PE_BUF 512 4,096 512 5,120 5,120
RE_DUP_NAX 255 32,767 255 255 255
STREAM_NMAX 1,735 16 20 256 256
SYM.I NK_MAX unsupported no limit no symbol no symbol no symbol
SYMLOOP_MAX 32 no limit no symbol no symbol no symbol
TTY_NAME_NAX 255 32 no symbol 128 128
TZNAME_NAX 255 6 255 no limit no limit

2.5.5. Indeterminate Runtime Limits

We mentioned that some of the limits can be indeterminate. The problem we encounter is that if
these limits aren't defined in the <l i ni t s. h> header, we can't use them at compile time. But they
might not be defined at runtime if their value is indeterminate! Let's look at two specific cases:

allocating storage for a pathname and determining the number of file descriptors.

Pathnames




Many programs need to allocate storage for a pathname. Typically, the storage has been allocated at
compile time, and various magic numbersfew of which are the correct valuehave been used by
different programs as the array size: 256, 512, 1024, or the standard 1/0 constant BUFSI Z. The
4.3BSD constant MAXPATHLEN in the header <sys/ par am h> is the correct value, but many 4.3BSD
applications didn't use it.

POSIX.1 tries to help with the PATH MAX value, but if this value is indeterminate, we're still out of luck.
Figure 2.15 shows a function that we'll use throughout this text to allocate storage dynamically for a
pathname.

Figure 2.15. Dynamically allocate space for a pathname

#i ncl ude "apue. h"
#i ncl ude <errno. h>
#include <limts. h>

#ifdef PATH_MAX

static int pathmax = PATH NAX;
#el se

static int pathmax = 0;

#endi f

#def i ne SUSV3 200112L
static |long posix_version = 0;

/* If PATH MAX is indeternminate, no guarantee this is adequate */
#define PATH MAX_GUESS 1024

char *
path_alloc(int *sizep) /* also return allocated size, if nonnull */
{

char *ptr;

int size;

if (posix_version == 0)
posi x_version = sysconf(_SC VERSI ON) ;

if (pathmax == 0) { [* first tinme through */
errno = 0;
if ((pathmax = pathconf("/", _PC PATH MAX)) < 0) {
if (errno == 0)
pat hmax = PATH MAX GUESS; /* it's indeterm nate */
el se
err_sys("pathconf error for _PC PATH MAX");
} else {
pat hmax++; /* add one since it's relative to root */
}



i f (posix_version < SUSV3)
size = pathmax + 1;

el se
size = pat hmax;
if ((ptr = malloc(size)) == NULL)
err_sys("malloc error for pathnane");
if (sizep !'= NULL)
*sizep = size;

return(ptr);

If the constant PATH MAX is defined in <l i ni ts. h>, then we're all set. If it's not, we need to call

pat hconf . The value returned by pat hconf is the maximum size of a relative pathname when the first
argument is the working directory, so we specify the root as the first argument and add 1 to the
result. If pat hconf indicates that PATH_MAX is indeterminate, we have to punt and just guess a value.

Standards prior to SUSv3 were unclear as to whether or not PATH_MAX included a null byte at the end
of the pathname. If the operating system implementation conforms to one of these prior versions, we
need to add 1 to the amount of memory we allocate for a pathname, just to be on the safe side.

The correct way to handle the case of an indeterminate result depends on how the allocated space is
being used. If we were allocating space for a call to get cwd, for exampleto return the absolute
pathname of the current working directory; see Section 4.22and if the allocated space is too small,
an error is returned and errno is set to ERANGE. We could then increase the allocated space by calling
real | oc (see Section 7.8 and Exercise 4.16) and try again. We could keep doing this until the call to
get cwd succeeded.

Maximum Number of Open Files

A common sequence of code in a daemon processa process that runs in the background, not
connected to a terminalis one that closes all open files. Some programs have the following code
sequence, assuming the constant NOFI LE was defined in the <sys/ param h> header:

#i nclude <sys/param h>

for (i =0; i < NOFILE, i++)
close(i);

Other programs use the constant _NFI LE that some versions of <stdi o. h> provide as the upper limit.
Some hard code the upper limit as 20.

We would hope to use the POSIX.1 value OPEN_MAX to determine this value portably, but if the value
is indeterminate, we still have a problem. If we wrote the following and if OPEN_MAX was
indeterminate, the loop would never execute, since sysconf would return -1:



#i ncl ude <uni std. h>

for (i = 0; i < sysconf(_SC OPEN MAX); i++)
close(i);

Our best option in this case is just to close all descriptors up to some arbitrary limit, say 256. As with
our pathname example, this is not guaranteed to work for all cases, but it's the best we can do. We
show this technique in Figure 2.16.

Figure 2.16. Determine the number of file descriptors

#i ncl ude "apue. h"
#i ncl ude <errno. h>
#include <limts.h>

#i fdef OPEN_MAX

static |long openmax = OPEN_MAX;
#el se

static |long openmax = O;

#endi f

/*

* |f OPEN_MAX is indeterm nate, we're not
* guaranteed that this is adequate.
*/

#defi ne OPEN_MAX_GUESS 256

| ong
open_nax(voi d)
{
if (openmax == 0) { [* first tinme through */
errno = 0;
if ((opennax = sysconf(_SC OPEN MAX)) < 0) {
if (errno == 0)
opennmax = OPEN_MAX GUESS; [* it's indeternmi nate */
el se
err_sys("sysconf error for _SC OPEN_NAX");
}
}
return(opennax);
}

We might be tempted to call cl ose until we get an error return, but the error return from cl ose



(EBADF) doesn't distinguish between an invalid descriptor and a descriptor that wasn't open. If we
tried this technique and descriptor 9 was not open but descriptor 10 was, we would stop on 9 and
never close 10. The dup function (Section 3.12) does return a specific error when OPEN_MAX is
exceeded, but duplicating a descriptor a couple of hundred times is an extreme way to determine this
value.

Some implementations will return LONG_MAX for limits values that are effectively unlimited. Such is the
case with the Linux limit for ATEXI T_MAX (see Figure 2.14). This isn't a good idea, because it can cause
programs to behave badly.

For example, we can use the ul i it command built into the Bourne-again shell to change the
maximum number of files our processes can have open at one time. This generally requires special
(superuser) privileges if the limit is to be effectively unlimited. But once set to infinite, sysconf will
report LONG MAX as the limit for OPEN_MAX. A program that relies on this value as the upper bound of
file descriptors to close as shown in Figure 2.16 will waste a lot of time trying to close 2,147,483,647
file descriptors, most of which aren't even in use.

Systems that support the XSI extensions in the Single UNIX Specification will provide the

getrlinit (2) function (Section 7.11). It can be used to return the maximum number of descriptors
that a process can have open. With it, we can detect that there is no configured upper bound to the
number of open files our processes can open, so we can avoid this problem.

The OPEN_MAX value is called runtime invariant by POSIX, meaning that its value should not
change during the lifetime of a process. But on systems that support the XSI extensions, we can
call the setrlinit (2) function (Section 7.11) to change this value for a running process. (This
value can also be changed from the C shell with the | i it command, and from the Bourne,
Bourne-again, and Korn shells with the ul i it command.) If our system supports this
functionality, we could change the function in Figure 2.16 to call sysconf every time it is called,
not only the first time.
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2.6. Options

We saw the list of POSIX.1 options in Figure 2.5 and discussed XSI option groups in Section 2.2.3. If
we are to write portable applications that depend on any of these optionally-supported features, we
need a portable way to determine whether an implementation supports a given option.

Just as with limits (Section 2.5), the Single UNIX Specification defines three ways to do this.

1. Compile-time options are defined in <uni st d. h>.

2. Runtime options that are not associated with a file or a directory are identified with the sysconf
function.

3. Runtime options that are associated with a file or a directory are discovered by calling either the
pat hconf or the f pat hconf function.

The options include the symbols listed in the third column of Figure 2.5, as well as the symbols listed
in Figures 2.17 and 2.18. If the symbolic constant is not defined, we must use sysconf, pat hconf , or
f pat hconf to determine whether the option is supported. In this case, the name argument to the
function is formed by replacing the _POSI X at the beginning of the symbol with _SCor _PC. For
constants that begin with _XOPEN, the name argument is formed by prepending the string with _SC or
_PC. For example, if the constant _PGOSI X_THREADS is undefined, we can call sysconf with the name
argument set to _SC _THREADS to determine whether the platform supports the POSIX threads option.
If the constant _XOPEN_UNI X is undefined, we can call sysconf with the name argument set to

_SC _XOPEN_UNI X to determine whether the platform supports the XSl extensions.

Figure 2.17. Options and name arguments to sysconf

Name of option Description name argument

_PCSI X_J0B_CONTROL indicates whether the implementation | _SC JOB_CONTROL
supports job control

_PCsl X_READER WRI TER_LQOCKS | indicates whether the implementation | _SC_READER WRI TER _LOCKS
supports readerwriter locks

_PCSI X_SAVED | DS indicates whether the implementation | _SC_SAVED | DS
supports the saved set-user-I1D and
the saved set-group-1D

_PGsI X_SHELL indicates whether the implementation | _SC SHELL
supports the POSIX shell




Name of option

Description

name argument

_POSI X_VERSI ON

indicates the POSIX.1 version

_SC_VERSI ON

_XOPEN_CRYPT indicates whether the implementation | _SC_XOPEN_CRYPT
supports the XSI encryption option
group

_XOPEN_LEGACY indicates whether the implementation | _SC_XOPEN_LEGACY

supports the XSI legacy option group

_XOPEN_REALTI ME

indicates whether the implementation
supports the XSl real-time option

group

_SC_XOPEN_REALTI ME

_ XOPEN_REALTI ME_THREADS

indicates whether the implementation
supports the XSl real-time threads
option group

_SC_XOPEN_REALTI ME_THREADS

_ XOPEN_VERS| ON

indicates the XSI version

_SC_XOPEN_VERSI ON

Figure 2.18. Options and name arguments to pat hconf and f pat hconf

Name of option

Description

name argument

_POSI X_CHOWN_RESTRI CTED

indicates whether use of chown is
restricted

_PC_CHOWN_RESTRI CTED

_PGSI X_NO TRUNC indicates whether pathnames longer _PC_NO TRUNC
than NAME_MAX generate an error

_POSI X_VDI SABLE if defined, terminal special characters | _PC VDI SABLE
can be disabled with this value

_PCSI X_ASYNC | O indicates whether asynchronous 1/0 _PC ASYNC | O
can be used with the associated file

_POSIX PRIO IO indicates whether prioritized 1/0 can _PCPRIOIO
be used with the associated file

_POSI X_SYNC | O indicates whether synchronized 1/0 _PC_ SYNC IO

can be used with the associated file

If the symbolic constant is defined by the platform, we have three possibilities.

1. If the symbolic constant is defined to have the value 1, then the corresponding option is
unsupported by the platform.




2. If the symbolic constant is defined to be greater than zero, then the corresponding option is
supported.

3. If the symbolic constant is defined to be equal to zero, then we must call sysconf, pat hconf , or
f pat hconf to determine whether the option is supported.

Figure 2.17 summarizes the options and their symbolic constants that can be used with sysconf, in
addition to those listed in Figure 2.5.

The symbolic constants used with pat hconf and f pat hconf are summarized in Figure 2.18. As with
the system limits, there are several points to note regarding how options are treated by sysconf,
pat hconf , and f pat hconf .

1. The value returned for _SC VERSI ON indicates the four-digit year and two-digit month of the
standard. This value can be 198808L, 199009L, 199506L, or some other value for a later
version of the standard. The value associated with Version 3 of the Single UNIX Specification is
200112L.

2. The value returned for _SC _XOPEN_VERSI ON indicates the version of the XSI that the system
complies with. The value associated with Version 3 of the Single UNIX Specification is 600.

3. The values _SC JOB_CONTROL, _SC SAVED | DS, and _PC VDI SABLE no longer represent optional
features. As of Version 3 of the Single UNIX Specification, these features are now required,
although these symbols are retained for backward compatibility.

4. PC CHOMN RESTRI CTED and _PC _NO TRUNC return 1 without changing err no if the feature is not
supported for the specified pathname or filedes.

5. The referenced file for _PC_CHOW_ RESTRI CTED must be either a file or a directory. If itis a
directory, the return value indicates whether this option applies to files within that directory.

6. The referenced file for _PC_NO TRUNC must be a directory. The return value applies to filenames
within the directory.

7. The referenced file for _PC VDI SABLE must be a terminal file.

In Figure 2.19 we show several configuration options and their corresponding values on the four
sample systems we discuss in this text. Note that several of the systems haven't yet caught up to the
latest version of the Single UNIX Specification. For example, Mac OS X 10.3 supports POSIX threads
but defines _POSI X_THREADS as

#define _POSI X_THREADS

without specifying a value. To conform to Version 3 of the Single UNIX Specification, the symbol, if
defined, should be set to -1, 0, or 200112.



Figure 2.19. Examples of configuration options

Solaris 9
Limit Feeiob | Linux2.4.22 | M OSX UFS file PCES file
system system
_PCSI X_CHOWN_RESTRI CTED 1 1 1 1 1
_POSI X_J0OB_CONTROL 1 1 1 1 1
_PGSI X_NO _TRUNC 1 1 1 1 | unsupported
_PGCsI X_SAVED | DS unsupported 1 | unsupported 1 1
_POSI X_THREADS 200112 200112 defined 1 1
_POSI X_VDI SABLE 255 0 255 0 0
_PCSI X_VERSI ON 200112 200112 198808 199506 199506
_XOPEN_UNI X unsupported 1 undefined 1 1
_XOPEN_VERSI ON unsupported 500 undefined 3 3

An entry is marked as "undefined" if the feature is not defined, i.e., the system doesn't define the
symbolic constant or its corresponding _PC or _SC name. In contrast, the "defined" entry means that
the symbolic constant is defined, but no value is specified, as in the preceding _POSI X_THREADS
example. An entry is "unsupported” if the system defines the symbolic constant, but it has a value of
-1, or it has a value of O but the corresponding sysconf or pat hconf call returned -1.

Note that pat hconf returns a value of 1 for PC NO TRUNC when used with a file from a PCFS file
system on Solaris. The PCFS file system supports the DOS format (for floppy disks), and DOS
filenames are silently truncated to the 8.3 format limit that the DOS file system requires.
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2.7. Feature Test Macros

The headers define numerous POSIX.1 and XSI symbols, as we've described. But most
implementations can add their own definitions to these headers, in addition to the POSIX.1 and XSI
definitions. If we want to compile a program so that it depends only on the POSIX definitions and
doesn't use any implementation-defined limits, we need to define the constant _POSI X_C SOURCE. All
the POSIX.1 headers use this constant to exclude any implementation-defined definitions when
_POSI X_C_SOURCE is defined.

Previous versions of the POSIX.1 standard defined the _PCSI X_SOURCE constant. This has been
superseded by the _POSI X_C_SOURCE constant in the 2001 version of POSIX.1.

The constants POS| X _C SOURCE and _XOPEN_SOURCE are called feature test macros. All feature test
macros begin with an underscore. When used, they are typically defined in the cc command, as in

cc -D_POSI X_C_SOURCE=200112 file.c

This causes the feature test macro to be defined before any header files are included by the C
program. If we want to use only the POSIX.1 definitions, we can also set the first line of a source file
to

#define _POSI X_C_SOURCE 200112

To make the functionality of Version 3 of the Single UNIX Specification available to applications, we
need to define the constant _XOPEN_SOURCE to be 600. This has the same effect as defining
_PGsI X_C_SOURCE to be 200112L as far as POSIX.1 functionality is concerned.

The Single UNIX Specification defines the c99 utility as the interface to the C compilation
environment. With it we can compile a file as follows:

c99 -D XOPEN_SOURCE=600 file.c -o file

To enable the 1999 ISO C extensions in the gcc C compiler, we use the - st d=c99 option, as in

gcc - D _XOPEN_SOURCE=600 -std=c99 file.c -0 file



Another feature test macro is _ _STDC_ _, which is automatically defined by the C compiler if the
compiler conforms to the I1SO C standard. This allows us to write C programs that compile under both
ISO C compilers and non-1SO C compilers. For example, to take advantage of the I1SO C prototype
feature, if supported, a header could contain

#ifdef _ STDC

void *nyfunc(const char *, int);
#el se

void *nyfunc();

#endi f

Although most C compilers these days support the ISO C standard, this use of the _ _STDC_ _ feature
test macro can still be found in many header files.
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2.8. Primitive System Data Types

Historically, certain C data types have been associated with certain UNIX system variables. For
example, the major and minor device numbers have historically been stored in a 16-bit short integer,
with 8 bits for the major device number and 8 bits for the minor device number. But many larger
systems need more than 256 values for these device numbers, so a different technique is needed.
(Indeed, Solaris uses 32 bits for the device number: 14 bits for the major and 18 bits for the minor.)

The header <sys/t ypes. h> defines some implementation-dependent data types, called the primitive
system data types. More of these data types are defined in other headers also. These data types are
defined in the headers with the C t ypedef facility. Most end in _t . Figure 2.20 lists many of the

primitive system data types that we'll encounter in this text.

Figure 2.20. Some common primitive system data types

Type Description
caddr _t core address (Section 14.9)
cl ock_t counter of clock ticks (process time) (Section 1.10)
conp_t compressed clock ticks (Section 8.14)
dev_t device numbers (major and minor) (Section 4.23)
fd_set file descriptor sets (Section 14.5.1)
fpos_t file position (Section 5.10)
gid_t numeric group IDs
i no_t i-node numbers (Section 4.14)
node_t file type, file creation mode (Section 4.5)
nlink_t link counts for directory entries (Section 4.14)
of f _t file sizes and offsets (signed) (I seek, Section 3.6)
pid_t process IDs and process group IDs (signed) (Sections 8.2
and 9.4)
ptrdiff_t result of subtracting two pointers (signed)
rlimt resource limits (Section 7.11)
sig_atomc_t data type that can be accessed atomically (Section 10.15)




Type Description
si gset _t signal set (Section 10.11)
size_t sizes of objects (such as strings) (unsigned) (Section 3.7)
ssi ze_t functions that return a count of bytes (signed) (read, wite,
Section 3.7)
tinme_t counter of seconds of calendar time (Section 1.10)
uid_t numeric user IDs
wchar _t can represent all distinct character codes

By defining these data types this way, we do not build into our programs implementation details that
can change from one system to another. We describe what each of these data types is used for when
we encounter them later in the text.
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2.9. Conflicts Between Standards

All in all, these various standards fit together nicely. Our main concern is any differences between the
ISO C standard and POSIX.1, since SUSv3 is a superset of POSIX.1. There are some differences.

ISO C defines the function cl ock to return the amount of CPU time used by a process. The value
returned is a cl ock_t value. To convert this value to seconds, we divide it by CLOCKS _PER_SEC, which
is defined in the <ti me. h> header. POSIX.1 defines the function ti nes that returns both the CPU time
(for the caller and all its terminated children) and the clock time. All these time values are cl ock_t
values. The sysconf function is used to obtain the number of clock ticks per second for use with the
return values from the ti nes function. What we have is the same term, clock ticks per second,
defined differently by ISO C and POSIX.1. Both standards also use the same data type (cl ock_t) to
hold these different values. The difference can be seen in Solaris, where cl ock returns microseconds
(hence CLOCKS PER SEC is 1 million), whereas sysyconf returns the value 100 for clock ticks per
second.

Another area of potential conflict is when the ISO C standard specifies a function, but doesn't specify
it as strongly as POSIX.1 does. This is the case for functions that require a different implementation
in a POSIX environment (with multiple processes) than in an 1ISO C environment (where very little
can be assumed about the host operating system). Nevertheless, many POSIX-compliant systems
implement the I1SO C function, for compatibility. The si gnal function is an example. If we
unknowingly use the si gnal function provided by Solaris (hoping to write portable code that can be
run in 1ISO C environments and under older UNIX systems), it'll provide semantics different from the
POSIX.1 si gacti on function. We'll have more to say about the si gnal function in Chapter 10.
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2.10. Summary

Much has happened over the past two decades with the standardization of the UNIX programming
environment. We've described the dominant standardsISO C, POSIX, and the Single UNIX
Specificationand their effect on the four implementations that we'll examine in this text: FreeBSD,
Linux, Mac OS X, and Solaris. These standards try to define certain parameters that can change with
each implementation, but we've seen that these limits are imperfect. We'll encounter many of these
limits and magic constants as we proceed through the text.

The bibliography specifies how one can obtain copies of the standards that we've discussed.
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Exercises

2.1 We mentioned in Section 2.8 that some of the primitive system data types are defined in
more than one header. For example, on FreeBSD 5.2.1, si ze_t is defined in 26 different
headers. Because all 26 headers could be included in a program and because I1SO C does
not allow multiple t ypedef s for the same name, how must the headers be written?

2.2 Examine your system's headers and list the actual data types used to implement the
primitive system data types.

2.3 Update the program in Figure 2.16 to avoid the needless processing that occurs when
sysconf returns LONG _MAX as the limit for OPEN_NAX.
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Chapter 3. File I/O

Section 3.1. Introduction

Section 3.2. File Descriptors

Section 3.3. open Function

Section 3.4. creat Function

Section 3.5. close Function

Section 3.6. Iseek Function

Section 3.7. read Function

Section 3.8. write Function

Section 3.9. 1/0 Efficiency

Section 3.10. File Sharing

Section 3.11. Atomic Operations

Section 3.12. dup and dup2 Functions

Section 3.13. sync, fsync, and fdatasync Functions

Section 3.14. fcntl Function

Section 3.15. ioctl Function

Section 3.16. /dev/fd

Section 3.17. Summary

Exercises
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3.1. Introduction

We'll start our discussion of the UNIX System by describing the functions available for file I/0open a
file, read a file, write a file, and so on. Most file 1/0 on a UNIX system can be performed using only
five functions: open, read, wite, | seek, and cl ose. We then examine the effect of various buffer
sizes on the read and wri t e functions.

The functions described in this chapter are often referred to as unbuffered 1/0, in contrast to the
standard 1/0 routines, which we describe in Chapter 5. The term unbuffered means that each read or
wri t e invokes a system call in the kernel. These unbuffered 1/0 functions are not part of ISO C, but
are part of POSIX.1 and the Single UNIX Specification.

Whenever we describe the sharing of resources among multiple processes, the concept of an atomic
operation becomes important. We examine this concept with regard to file 1/0 and the arguments to
the open function. This leads to a discussion of how files are shared among multiple processes and the
kernel data structures involved. After describing these features, we describe the dup, fcntl, sync,
fsync, and i oct | functions.

== e prcv | nexr e |



=TeTe e prev | nexr o

3.2. File Descriptors

To the kernel, all open files are referred to by file descriptors. A file descriptor is a non-negative
integer. When we open an existing file or create a new file, the kernel returns a file descriptor to the
process. When we want to read or write a file, we identify the file with the file descriptor that was
returned by open or creat as an argument to either read or wi te.

By convention, UNIX System shells associate file descriptor O with the standard input of a process,
file descriptor 1 with the standard output, and file descriptor 2 with the standard error. This
convention is used by the shells and many applications; it is not a feature of the UNIX kernel.
Nevertheless, many applications would break if these associations weren't followed.

The magic numbers 0, 1, and 2 should be replaced in POSIX-compliant applications with the symbolic
constants STDI N_FI LENO, STDOUT_FI LENO, and STDERR _FI LENO. These constants are defined in the
<uni st d. h> header.

File descriptors range from O through OPEN_MAX. (Recall Figure 2.10.) Early historical implementations
of the UNIX System had an upper limit of 19, allowing a maximum of 20 open files per process, but
many systems increased this limit to 63.

With FreeBSD 5.2.1, Mac OS X 10.3, and Solaris 9, the limit is essentially infinite, bounded by
the amount of memory on the system, the size of an integer, and any hard and soft limits
configured by the system administrator. Linux 2.4.22 places a hard limit of 1,048,576 on the
number of file descriptors per process.

=TT e rrev | nexr



=TeTe e prev | nexr o

3.3. open Function

A file is opened or created by calling the open function.

View full width

#i ncl ude <fcntl. h>

i nt open(const char *pathname, int oflag, ... /*
=mde_t mode */ );

Returns: file descriptor if OK, 1 on error

We show the third argument as . . . , which is the ISO C way to specify that the number and types of
the remaining arguments may vary. For this function, the third argument is used only when a new
file is being created, as we describe later. We show this argument as a comment in the prototype.

The pathname is the name of the file to open or create. This function has a multitude of options,

which are specified by the oflag argument. This argument is formed by ORing together one or more
of the following constants from the <fcnt|. h> header:

O _RDONLY Open for reading only.
O WRONLY Open for writing only.

O_RDWR  Open for reading and writing.

Most implementations define O RDONLY as 0, O WRONLY as 1, and O RDWR as 2, for compatibility
with older programs.

One and only one of these three constants must be specified. The following constants are optional:



O_APPEND Append to the end of file on each write. We describe this option in detail in

Section 3.11.

O _CREAT Create the file if it doesn't exist. This option requires a third argument to the

open function, the mode, which specifies the access permission bits of the new
file. (When we describe a file's access permission bits in Section 4.5, we'll see
how to specify the mode and how it can be modified by the umask value of a
process.)

O _EXCL Generate an error if O_CREAT is also specified and the file already exists. This

test for whether the file already exists and the creation of the file if it doesn't
exist is an atomic operation. We describe atomic operations in more detail in

Section 3.11.

O _TRUNC If the file exists and if it is successfully opened for either write-only or
readwrite, truncate its length to O.

O_NOCTTY If the pathname refers to a terminal device, do not allocate the device as the
controlling terminal for this process. We talk about controlling terminals in
Section 9.6.

O_NONBLOCK If the pathname refers to a FIFO, a block special file, or a character special file,

this option sets the nonblocking mode for both the opening of the file and
subsequent 1/0. We describe this mode in Section 14.2.

In earlier releases of System V, the O NDELAY (no delay) flag was introduced. This option is
similar to the O_NONBLOCK (nonblocking) option, but an ambiguity was introduced in the return
value from a read operation. The no-delay option causes a read to return O if there is no data to
be read from a pipe, FIFO, or device, but this conflicts with a return value of 0, indicating an
end of file. SVR4-based systems still support the no-delay option, with the old semantics, but
new applications should use the nonblocking option instead.

The following three flags are also optional. They are part of the synchronized input and output option
of the Single UNIX Specification (and thus POSIX.1):

O DSYNC Have each wri t e wait for physical 1/0 to complete, but don't wait for file
attributes to be updated if they don't affect the ability to read the data just
written.

O_RSYNC Have each r ead operation on the file descriptor wait until any pending writes for

the same portion of the file are complete.

O_SYNC Have each wr it e wait for physical 1/0 to complete, including 1/0 necessary to

update file attributes modified as a result of the wri t e. We use this option in
Section 3.14.

The O DSYNC and O _SYNC flags are similar, but subtly different. The O DSYNC flag affects a file's
attributes only when they need to be updated to reflect a change in the file's data (for example,
update the file's size to reflect more data). With the O _SYNC flag, data and attributes are always
updated synchronously. When overwriting an existing part of a file opened with the O DSYNC flag,
the file times wouldn't be updated synchronously. In contrast, if we had opened the file with the



O SYNC flag, every wri t e to the file would update the file's times before the wri t e returns,
regardless of whether we were writing over existing bytes or appending to the file.

Solaris 9 supports all three flags. FreeBSD 5.2.1 and Mac OS X 10.3 have a separate flag
(O_FSYNC) that does the same thing as O SYNC. Because the two flags are equivalent, FreeBSD
5.2.1 defines them to have the same value (but curiously, Mac OS X 10.3 doesn't define
O_SYNC). FreeBSD 5.2.1 and Mac OS X 10.3 don't support the O DSYNCor O_RSYNC flags. Linux
2.4.22 treats both flags the same as O SYNC.

The file descriptor returned by open is guaranteed to be the lowest-numbered unused descriptor. This
fact is used by some applications to open a new file on standard input, standard output, or standard
error. For example, an application might close standard outputnormally, file descriptor 1and then
open another file, knowing that it will be opened on file descriptor 1. We'll see a better way to
guarantee that a file is open on a given descriptor in Section 3.12 with the dup2 function.

Filename and Pathname Truncation

What happens if NAVME_MAX is 14 and we try to create a new file in the current directory with a
filename containing 15 characters? Traditionally, early releases of System V, such as SVR2, allowed
this to happen, silently truncating the filename beyond the 14th character. BSD-derived systems
returned an error status, with errno set to ENAMETOOLONG. Silently truncating the filename presents a
problem that affects more than simply the creation of new files. If NAVE_MAX is 14 and a file exists
whose name is exactly 14 characters, any function that accepts a pathname argument, such as open
or stat, has no way to determine what the original name of the file was, as the original name might
have been truncated.

With POSIX.1, the constant _PGOSI X_NO TRUNC determines whether long filenames and long pathnames
are truncated or whether an error is returned. As we saw in Chapter 2, this value can vary based on
the type of the file system.

Whether or not an error is returned is largely historical. For example, SVR4-based systems do
not generate an error for the traditional System V file system, S5. For the BSD-style file system
(known as UFS), however, SVR4-based systems do generate an error.

As another example, see Figure 2.19. Solaris will return an error for UFS, but not for PCFS, the
DOS-compatible file system, as DOS silently truncates filenames that don't fit in an 8.3 format.

BSD-derived systems and Linux always return an error.

If _POSI X_NO TRUNC is in effect, errno is set to ENAVETOOLONG, and an error status is returned if the
entire pathname exceeds PATH_MAX or any filename component of the pathname exceeds NAMVE_MAX.
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3.4. creat Function

A new file can also be created by calling the creat function.

#i ncl ude <fcntl. h>

int creat(const char *pathname, node_t mode);

Returns: file descriptor opened for write-only if OK, 1 on error

Note that this function is equivalent to

open (pathname, O WRONLY | O CREAT | O_TRUNC, mode);

Historically, in early versions of the UNIX System, the second argument to open could be only O,
1, or 2. There was no way to open a file that didn't already exist. Therefore, a separate system
call, creat , was needed to create new files. With the O CREAT and O _TRUNC options now provided
by open, a separate creat function is no longer needed.

We'll show how to specify mode in Section 4.5 when we describe a file's access permissions in detail.
One deficiency with cr eat is that the file is opened only for writing. Before the new version of open

was provided, if we were creating a temporary file that we wanted to write and then read back, we
had to call creat, cl ose, and then open. A better way is to use the open function, as in

open (pathname, O RDWR | O CREAT | O TRUNC, mode);
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3.5. cl ose Function

An open file is closed by calling the cl ose function.

#i ncl ude <uni std. h>

int close(int filedes);

Returns: O if OK, 1 on error

Closing a file also releases any record locks that the process may have on the file. We'll discuss this in
Section 14.3.

When a process terminates, all of its open files are closed automatically by the kernel. Many

programs take advantage of this fact and don't explicitly close open files. See the program in Figure
1.4, for example.
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3.6. | seek Function

Every open file has an associated "current file offset,"” normally a non-negative integer that measures
the number of bytes from the beginning of the file. (We describe some exceptions to the "non-
negative" qualifier later in this section.) Read and write operations normally start at the current file
offset and cause the offset to be incremented by the number of bytes read or written. By default, this
offset is initialized to O when a file is opened, unless the O APPEND option is specified.

An open file's offset can be set explicitly by calling | seek.

#i ncl ude <uni std. h>

off t Iseek(int filedes, off t offset, int whence);

Returns: new file offset if OK, 1 on error

The interpretation of the offset depends on the value of the whence argument.

e If whence is SEEK_SET, the file's offset is set to offset bytes from the beginning of the file.

e If whence is SEEK_CUR, the file's offset is set to its current value plus the offset. The offset can be
positive or negative.

e If whence is SEEK_END, the file's offset is set to the size of the file plus the offset. The offset can
be positive or negative.

Because a successful call to | seek returns the new file offset, we can seek zero bytes from the
current position to determine the current offset:
of f _t currpos;

currpos = |l seek(fd, 0, SEEK CUR);

This technique can also be used to determine if a file is capable of seeking. If the file descriptor refers
to a pipe, FIFO, or socket, | seek sets errno to ESPI PE and returns 1.

The three symbolic constantsSEEK_SET, SEEK_CUR, and SEEK_ENDwere introduced with System V.
Prior to this, whence was specified as 0 (absolute), 1 (relative to current offset), or 2 (relative



to end of file). Much software still exists with these numbers hard coded.

The character | in the name | seek means "long integer." Before the introduction of the of f _t
data type, the offset argument and the return value were long integers. | seek was introduced
with Version 7 when long integers were added to C. (Similar functionality was provided in
Version 6 by the functions seek and tell.)

Example

The program in Figure 3.1 tests its standard input to see whether it is capable of seeking.

If we invoke this program interactively, we get

$ ./a.out < /etc/notd

seek K

$ cat < /etc/notd | ./a.out
cannot seek

$ ./a.out < /var/spool/cron/FlFO
cannot seek

Figure 3.1. Test whether standard input is capable of seeking

#i ncl ude "apue. h"

i nt
mai n(voi d)
{
if (lseek(STDIN_FILENO 0, SEEK CUR) == -1)
printf("cannot seek\n");
el se
printf("seek OK\n");
exit(0);
}

Normally, a file's current offset must be a non-negative integer. It is possible, however, that certain
devices could allow negative offsets. But for regular files, the offset must be non-negative. Because
negative offsets are possible, we should be careful to compare the return value from | seek as being
equal to or not equal to 1 and not test if it's less than O.

The / dev/ kmemdevice on FreeBSD for the Intel x86 processor supports negative offsets.

Because the offset (of f _t) is a signed data type (Eigure 2.20), we lose a factor of 2 in the
maximum file size. If of f _t is a 32-bit integer, the maximum file size is 231-1 bytes.



| seek only records the current file offset within the kernelit does not cause any 1/0 to take place. This
offset is then used by the next read or write operation.

The file's offset can be greater than the file's current size, in which case the next wi t e to the file will
extend the file. This is referred to as creating a hole in a file and is allowed. Any bytes in a file that
have not been written are read back as 0.

A hole in a file isn't required to have storage backing it on disk. Depending on the file system
implementation, when you write after seeking past the end of the file, new disk blocks might be

allocated to store the data, but there is no need to allocate disk blocks for the data between the old
end of file and the location where you start writing.

Example

The program shown in Figure 3.2 creates a file with a hole in it.

Running this program gives us

$ ./a.out

$1s -1 file.hole check its size

-rWr--r-- 1 sar 16394 Nov 25 01:01 file.hole
$ od -c file.hole let'slook at the actual contents

0000000 a b c¢c d e f g h i j\0\0O\N0O\0\0\O
0000020 \O0O \O \O \O\O\O\O\O\O\O\O\OV\NOV\NO\O VO
*

0040000 A B C D E F G H I J

0040012

We use the od(1) command to look at the contents of the file. The - ¢ flag tells it to print the contents
as characters. We can see that the unwritten bytes in the middle are read back as zero. The seven-
digit number at the beginning of each line is the byte offset in octal.

To prove that there is really a hole in the file, let's compare the file we've just created with a file of
the same size, but without holes:

$1s -Is file.hole file.nohole comparesizes
8 -rwr--r-- 1 sar 16394 Nov 25 01:01 file.hole
20 -rwr--r-- 1 sar 16394 Nov 25 01:03 file.nohole

Although both files are the same size, the file without holes consumes 20 disk blocks, whereas the file
with holes consumes only 8 blocks.

In this example, we call the wri t e function (Section 3.8). We'll have more to say about files with
holes in Section 4.12.



Figure 3.2. Create a file with a hole in it

#i ncl ude "apue. h"
#i nclude <fcntl. h>

char buf 1] ]
char buf 2[]

"abcdef ghij";
" ABCDEFGHI J";

i nt
mai n( voi d)
{
i nt fd;

if ((fd = creat("file.hole", FILE MODE)) < 0)
err_sys("creat error");

if (wite(fd, bufl, 10) != 10)
err_sys("bufl wite error");
/* offset now = 10 */

if (lseek(fd, 16384, SEEK SET) == -1)
err_sys("lseek error");
/* offset now = 16384 */

if (wite(fd, buf2, 10) != 10)
err_sys("buf2 wite error");
/* offset now = 16394 */

exit(0);

Because the offset address that | seek uses is represented by an of f _t , implementations are allowed
to support whatever size is appropriate on their particular platform. Most platforms today provide two
sets of interfaces to manipulate file offsets: one set that uses 32-bit file offsets and another set that
uses 64-bit file offsets.

The Single UNIX Specification provides a way for applications to determine which environments are
supported through the sysconf function (Section 2.5.4.). Figure 3.3 summarizes the sysconf
constants that are defined.

Figure 3.3. Data size options and name arguments to sysconf



Name of option Description name argument

_POSI X_V6_| LP32_OFF32 i nt, | ong, pointer, and of f _t types are | _SC V6_I| LP32_OFF32
32 bits.
_PCSI X V6_| LP32_CFFBI G int, |ong, and pointer types are 32 _SC V6_| LP32_CFFBI G

bits; of f _t types are at least 64 bits.

_PCSI X V6_LP64_OFF64 i nt types are 32 bits; | ong, pointer, _SC V6_LP64_OFF64
and of f _t types are 64 bits.

_PCsSI X_V6_LP64_COFFBI G i nt types are 32 bits; | ong, pointer, _SC V6_LP64_OFFBI G
and of f _t types are at least 64 bits.

The c99 compiler requires that we use the get conf (1) command to map the desired data size model
to the flags necessary to compile and link our programs. Different flags and libraries might be
needed, depending on the environments supported by each platform.

Unfortunately, this is one area in which implementations haven't caught up to the standards.
Confusing things further is the name changes that were made between Version 2 and Version 3
of the Single UNIX Specification.

To get around this, applications can set the _FI LE_OFFSET_BI TS constant to 64 to enable 64-bit
offsets. Doing so changes the definition of of f _t to be a 64-bit signed integer. Setting

_FI LE_OFFSET_BI TS to 32 enables 32-bit file offsets. Be aware, however, that although all four
platforms discussed in this text support both 32-bit and 64-bit file offsets by setting the

_FI LE_OFFSET_BI TS constant to the desired value, this is not guaranteed to be portable.

Note that even though you might enable 64-bit file offsets, your ability to create a file larger than 2
TB (231-1 bytes) depends on the underlying file system type.
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3.7.read Function

Data is read from an open file with the r ead function.

#i ncl ude <uni std. h>

ssize_t read(int filedes, void *buf, size_ t nbytes);

Returns: number of bytes read, O if end of file, 1 on error

If the r ead is successful, the number of bytes read is returned. If the end of file is encountered, O is
returned.

There are several cases in which the number of bytes actually read is less than the amount

requested:

e When reading from a regular file, if the end of file is reached before the requested number of
bytes has been read. For example, if 30 bytes remain until the end of file and we try to read
100 bytes, read returns 30. The next time we call r ead, it will return O (end of file).

e When reading from a terminal device. Normally, up to one line is read at a time. (We'll see how
to change this in Chapter 18.)

e When reading from a network. Buffering within the network may cause less than the requested
amount to be returned.

e When reading from a pipe or FIFO. If the pipe contains fewer bytes than requested, r ead will
return only what is available.

e When reading from a record-oriented device. Some record-oriented devices, such as magnetic
tape, can return up to a single record at a time.

e When interrupted by a signal and a partial amount of data has already been read. We discuss
this further in Section 10.5.

The read operation starts at the file's current offset. Before a successful return, the offset is
incremented by the number of bytes actually read.

POSIX.1 changed the prototype for this function in several ways. The classic definition is

int read(int filedes, char *buf, unsigned nbytes);



e First, the second argument was changed from a char * to a voi d * to be consistent with 1SO C:
the type voi d * is used for generic pointers.

¢ Next, the return value must be a signed integer (ssi ze_t) to return a positive byte count, O (for
end of file), or 1 (for an error).

¢ Finally, the third argument historically has been an unsigned integer, to allow a 16-bit
implementation to read or write up to 65,534 bytes at a time. With the 1990 POSIX.1 standard,
the primitive system data type ssi ze_t was introduced to provide the signed return value, and
the unsigned si ze_t was used for the third argument. (Recall the SSI ZE MAX constant from
Section 2.5.2.)

=T e pricy | nexr e |



=TeTe e prev | nexr o

3.8.wite Function

Data is written to an open file with the wri t e function.

View full width

#i ncl ude <uni std. h>

ssize t wite(int filedes, const void *buf, size_t
= bytes) ;

Returns: number of bytes written if OK, 1 on error

The return value is usually equal to the nbytes argument; otherwise, an error has occurred. A
common cause for a wri t e error is either filling up a disk or exceeding the file size limit for a given
process (Section 7.11 and Exercise 10.11).

For a regular file, the write starts at the file's current offset. If the O APPEND option was specified
when the file was opened, the file's offset is set to the current end of file before each write operation.
After a successful write, the file's offset is incremented by the number of bytes actually written.
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3.9. I/O Efficiency

The program in Figure 3.4 copies a file, using only the read and wri t e functions. The following
caveats apply to this program.

Figure 3.4. Copy standard input to standard output

#i ncl ude "apue. h"

#def i ne BUFFSI ZE 4096

i nt
mai n(voi d)
{
i nt n;
char buf [ BUFFSI ZE] ;
while ((n = read(STDI N_FI LENO, buf, BUFFSIZE)) > 0)
if (wite(STDOUT_FILENO, buf, n) !'=n)
err_sys("wite error");
if (n<0)
err_sys("read error");
exit(0);
}

e It reads from standard input and writes to standard output, assuming that these have been set
up by the shell before this program is executed. Indeed, all normal UNIX system shells provide
a way to open a file for reading on standard input and to create (or rewrite) a file on standard
output. This prevents the program from having to open the input and output files.

e Many applications assume that standard input is file descriptor O and that standard output is file
descriptor 1. In this example, we use the two defined names, STDI N_FI LENO and STDOUT_FI LENO,
from <uni st d. h>.

e The program doesn't close the input file or output file. Instead, the program uses the feature of
the UNIX kernel that closes all open file descriptors in a process when that process terminates.

e This example works for both text files and binary files, since there is no difference between the
two to the UNIX kernel.



One question we haven't answered, however, is how we chose the BUFFSI ZE value. Before answering
that, let's run the program using different values for BUFFSI ZE. Figure 3.5 shows the results for
reading a 103,316,352-byte file, using 20 different buffer sizes.

The file was read using the program shown in Figure 3.4, with standard output redirected to

/ dev/ nul | . The file system used for this test was the Linux ext 2 file system with 4,096-byte blocks.
(The st _bl ksi ze value, which we describe in Section 4.12, is 4,096.) This accounts for the minimum
in the system time occurring at a BUFFSI ZE of 4,096. Increasing the buffer size beyond this has little
positive effect.

Most file systems support some kind of read-ahead to improve performance. When sequential reads
are detected, the system tries to read in more data than an application requests, assuming that the
application will read it shortly. From the last few entries in Figure 3.5, it appears that read-ahead in
ext 2 stops having an effect after 128 KB.

Figure 3.5. Timing results for reading with different buffer sizes on

Linux

sFSIZE | (e | (eeconds) | (saconds) #ioops
1 124.89 161.65 288.64 103,316,352
2 63.10 80.96 145.81 51,658,#176
4 31.84 40.00 72.75 25,829,088
8 15.17 21.01 36.85 12,914,544
16 7.86 10.27 18.76 6,457,272
32 4.13 5.01 9.76 3,228,636
64 2.11 2.48 6.76 1,614,318
128 1.01 1.27 6.82 807,159
256 0.56 0.62 6.80 403,579
512 0.27 0.41 7.03 201,789
1,024 0.17 0.23 7.84 100,894
2,048 0.05 0.19 6.82 50,447
4,096 0.03 0.16 6.86 25,223
8,192 0.01 0.18 6.67 12,611
16,384 0.02 0.18 6.87 6,305
32,768 0.00 0.16 6.70 3,152




FSIZE | (e | (eecondsy | (seconds) #loops
65,536 0.02 0.19 6.92 1,576
131,072 0.00 0.16 6.84 788
262,144 0.01 0.25 7.30 394
524,288 0.00 0.22 7.35 198

We'll return to this timing example later in the text. In Section 3.14, we show the effect of
synchronous writes; in Section 5.8, we compare these unbuffered 1/0 times with the standard 1/0
library.

Beware when trying to measure the performance of programs that read and write files. The operating
system will try to cache the file incore, so if you measure the performance of the program repeatedly,
the successive timings will likely be better than the first. This is because the first run will cause the
file to be entered into the system's cache, and successive runs will access the file from the system’s
cache instead of from the disk. (The term incore means in main memory. Back in the day, a
computer's main memory was built out of ferrite core. This is where the phrase "core dump" comes
from: the main memory image of a program stored in a file on disk for diagnosis.)

In the tests reported in Figure 3.5, each run with a different buffer size was made using a different
copy of the file so that the current run didn't find the data in the cache from the previous run. The
files are large enough that they all don't remain in the cache (the test system was configured with
512 MB of RAM).
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3.10. File Sharing

The UNIX System supports the sharing of open files among different processes. Before describing the
dup function, we need to describe this sharing. To do this, we'll examine the data structures used by
the kernel for all 1/0.

The following description is conceptual. It may or may not match a particular implementation.
Refer to Bach [1986] for a discussion of these structures in System V. McKusick et al. [1996]
describes these structures in 4.4BSD. McKusick and Neville-Neil [2005] cover FreeBSD 5.2. For
a similar discussion of Solaris, see Mauro and McDougall [2001].

The kernel uses three data structures to represent an open file, and the relationships among them
determine the effect one process has on another with regard to file sharing.

1. Every process has an entry in the process table. Within each process table entry is a table of
open file descriptors, which we can think of as a vector, with one entry per descriptor.
Associated with each file descriptor are

a. The file descriptor flags (close-on-exec; refer to Figure 3.6 and Section 3.14)

b. A pointer to a file table entry

2. The kernel maintains a file table for all open files. Each file table entry contains

a. The file status flags for the file, such as read, write, append, sync, and nonblocking; more
on these in Section 3.14

b. The current file offset
c. A pointer to the v-node table entry for the file

3. Each open file (or device) has a v-node structure that contains information about the type of file
and pointers to functions that operate on the file. For most files, the v-node also contains the i-
node for the file. This information is read from disk when the file is opened, so that all the
pertinent information about the file is readily available. For example, the i-node contains the
owner of the file, the size of the file, pointers to where the actual data blocks for the file are
located on disk, and so on. (We talk more about i-nodes in Section 4.14 when we describe the
typical UNIX file system in more detail.)

Linux has no v-node. Instead, a generic i-node structure is used. Although the
implementations differ, the v-node is conceptually the same as a generic i-node. Both
point to an i-node structure specific to the file system.



We're ignoring some implementation details that don't affect our discussion. For example, the table of
open file descriptors can be stored in the user area instead of the process table. These tables can be
implemented in numerous waysthey need not be arrays; they could be implemented as linked lists of
structures, for example. These implementation details don't affect our discussion of file sharing.

Figure 3.6 shows a pictorial arrangement of these three tables for a single process that has two
different files open: one file is open on standard input (file descriptor 0), and the other is open on
standard output (file descriptor 1). The arrangement of these three tables has existed since the early
versions of the UNIX System [Thompson 1978], and this arrangement is critical to the way files are
shared among processes. We'll return to this figure in later chapters, when we describe additional
ways that files are shared.

Figure 3.6. Kernel data structures for open files
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The v-node was invented to provide support for multiple file system types on a single computer
system. This work was done independently by Peter Weinberger (Bell Laboratories) and Bill Joy
(Sun Microsystems). Sun called this the Virtual File System and called the file
systemindependent portion of the i-node the v-node [Kleiman 1986]. The v-node propagated
through various vendor implementations as support for Sun's Network File System (NFS) was
added. The first release from Berkeley to provide v-nodes was the 4.3BSD Reno release, when
NFS was added.

In SVR4, the v-node replaced the file systemindependent i-node of SVR3. Solaris is derived from
SVR4 and thus uses v-nodes.

Instead of splitting the data structures into a v-node and an i-node, Linux uses a file
systemindependent i-node and a file systemdependent i-node.

If two independent processes have the same file open, we could have the arrangement shown in
Figure 3.7. We assume here that the first process has the file open on descriptor 3 and that the
second process has that same file open on descriptor 4. Each process that opens the file gets its own
file table entry, but only a single v-node table entry is required for a given file. One reason each
process gets its own file table entry is so that each process has its own current offset for the file.



Figure 3.7. Two independent processes with the same file open
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Given these data structures, we now need to be more specific about what happens with certain
operations that we've already described.

e After each wite is complete, the current file offset in the file table entry is incremented by the
number of bytes written. If this causes the current file offset to exceed the current file size, the
current file size in the i-node table entry is set to the current file offset (for example, the file is
extended).

e If afile is opened with the O APPEND flag, a corresponding flag is set in the file status flags of the
file table entry. Each time awri t e is performed for a file with this append flag set, the current
file offset in the file table entry is first set to the current file size from the i-node table entry.
This forces every wi t e to be appended to the current end of file.

o If afile is positioned to its current end of file using | seek, all that happens is the current file
offset in the file table entry is set to the current file size from the i-node table entry. (Note that
this is not the same as if the file was opened with the O APPEND flag, as we will see in Section
3.11))

e The | seek function modifies only the current file offset in the file table entry. No 1/0 takes place.



It is possible for more than one file descriptor entry to point to the same file table entry, as we'll see
when we discuss the dup function in Section 3.12. This also happens after a f or k when the parent
and the child share the same file table entry for each open descriptor (Section 8.3).

Note the difference in scope between the file descriptor flags and the file status flags. The former
apply only to a single descriptor in a single process, whereas the latter apply to all descriptors in any
process that point to the given file table entry. When we describe the fcnt| function in Section 3.14,
we'll see how to fetch and modify both the file descriptor flags and the file status flags.

Everything that we've described so far in this section works fine for multiple processes that are
reading the same file. Each process has its own file table entry with its own current file offset.
Unexpected results can arise, however, when multiple processes write to the same file. To see how to
avoid some surprises, we need to understand the concept of atomic operations.
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3.11. Atomic Operations

Appending to a File

Consider a single process that wants to append to the end of a file. Older versions of the UNIX
System didn't support the O APPEND option to open, so the program was coded as follows:

if (Iseek(fd, OL, 2) < 0) /* position to EOF */
err_sys("lseek error");
if (wite(fd, buf, 100) != 100) /[* and wite */

err_sys("wite error");

This works fine for a single process, but problems arise if multiple processes use this technique to
append to the same file. (This scenario can arise if multiple instances of the same program are
appending messages to a log file, for example.)

Assume that two independent processes, A and B, are appending to the same file. Each has opened
the file but without the O APPEND flag. This gives us the same picture as Figure 3.7. Each process has
its own file table entry, but they share a single v-node table entry. Assume that process A does the

| seek and that this sets the current offset for the file for process A to byte offset 1,500 (the current
end of file). Then the kernel switches processes, and B continues running. Process B then does the

| seek, which sets the current offset for the file for process B to byte offset 1,500 also (the current
end of file). Then B calls wi t e, which increments B's current file offset for the file to 1,600. Because
the file's size has been extended, the kernel also updates the current file size in the v-node to 1,600.
Then the kernel switches processes and A resumes. When A calls wi t e, the data is written starting at
the current file offset for A, which is byte offset 1,500. This overwrites the data that B wrote to the
file.

The problem here is that our logical operation of "position to the end of file and write" requires two
separate function calls (as we've shown it). The solution is to have the positioning to the current end
of file and the write be an atomic operation with regard to other processes. Any operation that
requires more than one function call cannot be atomic, as there is always the possibility that the
kernel can temporarily suspend the process between the two function calls (as we assumed
previously).

The UNIX System provides an atomic way to do this operation if we set the O APPEND flag when a file
is opened. As we described in the previous section, this causes the kernel to position the file to its
current end of file before each wite. We no longer have to call | seek before each write.

pread and pwite Functions



The Single UNIX Specification includes XSI extensions that allow applications to seek and perform 1/0
atomically. These extensions are pread and pwite.

View full width

#i ncl ude <uni std. h>

ssize t pread(int filedes, void *buf, size_ t
=bytes, of f _t offset);

Returns: number of bytes read, O if end of file, 1 on error

View full width

ssize t pwite(int filedes, const void *buf,
™.ize t nbytes, off t offset);

Returns: number of bytes written if OK, 1 on error

Calling pr ead is equivalent to calling | seek followed by a call to r ead, with the following exceptions.

e There is no way to interrupt the two operations using pr ead.
e The file pointer is not updated.

Calling pwri t e is equivalent to calling | seek followed by a call to wri t e, with similar exceptions.

Creating a File

We saw another example of an atomic operation when we described the O CREAT and O _EXCL options
for the open function. When both of these options are specified, the open will fail if the file already
exists. We also said that the check for the existence of the file and the creation of the file was
performed as an atomic operation. If we didn't have this atomic operation, we might try

if ((fd = open(pathname, O WRONLY)) < 0) {
if (errno == ENCENT) {
if ((fd = creat(pathnanme, node)) < 0)
err_sys("creat error");
} else {
err_sys("open error");

}



The problem occurs if the file is created by another process between the open and the creat . If the
file is created by another process between these two function calls, and if that other process writes
something to the file, that data is erased when this creat is executed. Combining the test for
existence and the creation into a single atomic operation avoids this problem.

In general, the term atomic operation refers to an operation that might be composed of multiple
steps. If the operation is performed atomically, either all the steps are performed, or none are
performed. It must not be possible for a subset of the steps to be performed. We'll return to the topic
of atomic operations when we describe the | i nk function (Section 4.15) and record locking (Section

14.3).
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3.12. dup and dup2 Functions

An existing file descriptor is duplicated by either of the following functions.

#i ncl ude <unistd. h>
int dup(int filedes);

int dup2(int filedes, int filedes?);

Both return: new file descriptor if OK, 1 on error

The new file descriptor returned by dup is guaranteed to be the lowest-numbered available file
descriptor. With dup2, we specify the value of the new descriptor with the filedes2 argument. If
filedes2 is already open, it is first closed. If filedes equals filedes2, then dup2 returns filedes2 without
closing it.

The new file descriptor that is returned as the value of the functions shares the same file table entry
as the filedes argument. We show this in Figure 3.8.

Figure 3.8. Kernel data structures after dup(1)

[View full size image]

process table entry

fd file file table v-node table
flags m'ntl:r

o S file status flags v-node
id1 - information
id 3 current file offset -
ey i-node

: venode pointer information

“ue current file size

In this figure, we're assuming that when it's started, the process executes



newfd = dup(l);

We assume that the next available descriptor is 3 (which it probably is, since 0, 1, and 2 are opened
by the shell). Because both descriptors point to the same file table entry, they share the same file
status flagsread, write, append, and so onand the same current file offset.

Each descriptor has its own set of file descriptor flags. As we describe in the next section, the close-
on-exec file descriptor flag for the new descriptor is always cleared by the dup functions.

Another way to duplicate a descriptor is with the f cnt | function, which we describe in Section 3.14.

Indeed, the call

dup(fil edes);

is equivalent to

fentl (fil edes, F_DUPFD, 0);

Similarly, the call

dup2(filedes, filedes2);

is equivalent to

cl ose(fil edes?);
fentl (filedes, F DUPFD, filedes2);

In this last case, the dup2 is not exactly the same as a cl ose followed by an fcnt | . The differences
are as follows.

1. dup2 is an atomic operation, whereas the alternate form involves two function calls. It is
possible in the latter case to have a signal catcher called between the cl ose and the fcnt| that
could modify the file descriptors. (We describe signals in Chapter 10.)

2. There are some errno differences between dup2 and fcnt| .



The dup2 system call originated with Version 7 and propagated through the BSD releases.
The fcnt| method for duplicating file descriptors appeared with System 111 and continued
with System V. SVR3.2 picked up the dup2 function, and 4.2BSD picked up the fcnt|
function and the F_DUPFD functionality. POSIX.1 requires both dup2 and the F_DUPFD feature
of fentl .
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3.13. sync, f sync, and f dat async Functions

Traditional implementations of the UNIX System have a buffer cache or page cache in the kernel
through which most disk 1/0 passes. When we write data to a file, the data is normally copied by the
kernel into one of its buffers and queued for writing to disk at some later time. This is called delayed
write. (Chapter 3 of Bach [1986] discusses this buffer cache in detail.)

The kernel eventually writes all the delayed-write blocks to disk, normally when it needs to reuse the
buffer for some other disk block. To ensure consistency of the file system on disk with the contents of
the buffer cache, the sync, fsync, and f dat async functions are provided.

#i ncl ude <unistd. h>
int fsync(int filedes);

int fdatasync(int filedes);

Returns: O if OK, 1 on error

voi d sync(void);

The sync function simply queues all the modified block buffers for writing and returns; it does not
wait for the disk writes to take place.

The function sync is normally called periodically (usually every 30 seconds) from a system daemon,
often called updat e. This guarantees regular flushing of the kernel's block buffers. The command
sync (1) also calls the sync function.

The function f sync refers only to a single file, specified by the file descriptor filedes, and waits for the
disk writes to complete before returning. The intended use of f sync is for an application, such as a
database, that needs to be sure that the modified blocks have been written to the disk.

The f dat async function is similar to f sync, but it affects only the data portions of a file. With f sync,
the file's attributes are also updated synchronously.

All four of the platforms described in this book support sync and f sync. However, FreeBSD 5.2.1
and Mac OS X 10.3 do not support f dat async.
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3.14. f cnt| Function

The fcnt! function can change the properties of a file that is already open.

#i ncl ude <fcntl. h>

int fentl (int filedes, int end, ... /* int arg */ );

Returns: depends on cmd if OK (see following), 1 on error

In the examples in this section, the third argument is always an integer, corresponding to the
comment in the function prototype just shown. But when we describe record locking in Section 14.3,
the third argument becomes a pointer to a structure.

The fcnt! function is used for five different purposes.

1. Duplicate an existing descriptor (cmd = F_DUPFD)
Get/set file descriptor flags (cmd = F_GETFDor F_SETFD)

Get/set file status flags (cond = F_GETFL or F_SETFL)

> W N

Get/set asynchronous 1/0 ownership (cnd = F_GETOMN or F_SETOWN)
5. Get/set record locks (cmd = F_GETLK, F_SETLK, or F_SETLKW)

We'll now describe the first seven of these ten cmd values. (We'll wait until Section 14.3 to describe
the last three, which deal with record locking.) Refer to Figure 3.6, since we'll be referring to both the
file descriptor flags associated with each file descriptor in the process table entry and the file status
flags associated with each file table entry.



F_DUPFD

F_GETFD

F_SETFD

F_GETFL

Duplicate the file descriptor filedes. The new file descriptor is returned as the
value of the function. It is the lowest-numbered descriptor that is not already
open, that is greater than or equal to the third argument (taken as an integer).
The new descriptor shares the same file table entry as filedes. (Refer to Figure
3.8.) But the new descriptor has its own set of file descriptor flags, and its
FD_CLOEXEC file descriptor flag is cleared. (This means that the descriptor is left
open across an exec, which we discuss in Chapter 8.)

Return the file descriptor flags for filedes as the value of the function.
Currently, only one file descriptor flag is defined: the FD_CLOEXEC flag.

Set the file descriptor flags for filedes. The new flag value is set from the third
argument (taken as an integer).

Be aware that some existing programs that deal with the file descriptor
flags don't use the constant FD_CLOEXEC. Instead, the programs set the
flag to either O (don't close-on-exec, the default) or 1 (do close-on-exec).

Return the file status flags for filedes as the value of the function. We described
the file status flags when we described the open function. They are listed in

Figure 3.9.

Figure 3.9. File status flags for fcnt|

File status flag

Description

O _RDONLY open for reading only

O VWRONLY open for writing only

O_RDVWR open for reading and writing

O_APPEND append on each write

O_NONBLOCK nonblocking mode

O _SYNC wait for writes to complete (data and attributes)

O DSYNC wait for writes to complete (data only)

O RSYNC synchronize reads and writes

O _FSYNC wait for writes to complete (FreeBSD and Mac OS
X only)

O _ASYNC asynchronous 1/0 (FreeBSD and Mac OS X only)




Unfortunately, the three access-mode flagsO RDONLY, O WRONLY, and O RDWRare
not separate bits that can be tested. (As we mentioned earlier, these three
often have the values 0, 1, and 2, respectively, for historical reasons. Also,
these three values are mutually exclusive; a file can have only one of the three
enabled.) Therefore, we must first use the O ACCMODE mask to obtain the
access-mode bits and then compare the result against any of the three values.

F SETFL Set the file status flags to the value of the third argument (taken as an
integer). The only flags that can be changed are O APPEND, O NONBLOCK, O_SYNC,
O DSYNC, O RSYNC, O FSYNC, and O ASYNC.

F_GETOMN Get the process ID or process group ID currently receiving the SI G Oand
SI GURG signals. We describe these asynchronous 1/0 signals in Section 14.6.2.

F_SETOMN Set the process ID or process group ID to receive the SI G O and SI GURGsignals.
A positive arg specifies a process ID. A negative arg implies a process group ID
equal to the absolute value of arg.

The return value from fcnt | depends on the command. All commands return 1 on an error or some
other value if OK. The following four commands have special return values: F_DUPFD, F_GETFD,
F_CETFL, and F_GETOM. The first returns the new file descriptor, the next two return the
corresponding flags, and the final one returns a positive process ID or a negative process group ID.

Example

The program in Figure 3.10 takes a single command-line argument that specifies a file descriptor and
prints a description of selected file flags for that descriptor.

Note that we use the feature test macro _POSI X_C_SOURCE and conditionally compile the file access
flags that are not part of POSIX.1. The following script shows the operation of the program, when
invoked from bash (the Bourne-again shell). Results vary, depending on which shell you use.

$ ./a.out 0 < /dev/tty
read only

$ ./a.out 1 > tenp.foo
$ cat tenp.foo

wite only

$ ./a.out 2 2>>tenp.foo
wite only, append

$ ./a.out 5 5<>tenp.foo
read wite

The clause 5<>t enp. f oo opens the file t enp. f oo for reading and writing on file descriptor 5.

Figure 3.10. Print file flags for specified descriptor



#i ncl ude "apue. h"

#include <fcntl. h>

i nt

mai n(int argc, char *argv[])

{

i nt val ;

if (argc !'= 2)
err_quit("usage: a.out <descriptor#>");

if ((val = fentl(atoi(argv[1]), F_GETFL, 0)) < 0)
err_sys("fecntl error for fd %", atoi(argv[1]));

switch (val & O ACCMODE) {

case O RDONLY:
printf("read only");
br eak;

case O VWRONLY:
printf("wite only");
br eak;

case O RDWR
printf("read wite");
br eak;

defaul t:
err_dunp("unknown access node");

}

if (val & O_APPEND)
printf(", append");
if (val & O _NONBLOCK)
printf(", nonbl ocking");
#i f defined( O_SYNC)
if (val & O _SYNO)
printf(", synchronous wites");
#endi f
#if ldefined(_POSI X C SOURCE) && defined( O FSYNC)
if (val & O FSYNQ)
printf(", synchronous wites");

#endi f
putchar('\n');
exit(0);

}

Example



When we modify either the file descriptor flags or the file status flags, we must be careful to fetch the
existing flag value, modify it as desired, and then set the new flag value. We can't simply do an
F_SETFD or an F_SETFL, as this could turn off flag bits that were previously set.

Figure 3.11 shows a function that sets one or more of the file status flags for a descriptor.

If we change the middle statement to

val &= ~fl ags; /* turn flags off */

we have a function named cl r _f 1, which we'll use in some later examples. This statement logically
ANDs the one's complement of f | ags with the current val .

If we call set _fl from Figure 3.4 by adding the line

set _fl (STDOUT_FI LENO, O SYNC);

at the beginning of the program, we'll turn on the synchronous-write flag. This causes each write to
wait for the data to be written to disk before returning. Normally in the UNIX System, a wite only
queues the data for writing; the actual disk write operation can take place sometime later. A
database system is a likely candidate for using O SYNC, so that it knows on return from a wite that
the data is actually on the disk, in case of an abnormal system failure.

We expect the O SYNC flag to increase the clock time when the program runs. To test this, we can run
the program in Figure 3.4, copying 98.5 MB of data from one file on disk to another and compare this
with a version that does the same thing with the O SYNC flag set. The results from a Linux system
using the ext 2 file system are shown in Figure 3.12.

The six rows in Figure 3.12 were all measured with a BUFFSI ZE of 4,096. The results in Figure 3.5
were measured reading a disk file and writing to / dev/ nul | , so there was no disk output. The second
row in Figure 3.12 corresponds to reading a disk file and writing to another disk file. This is why the
first and second rows in Figure 3.12 are different. The system time increases when we write to a disk
file, because the kernel now copies the data from our process and queues the data for writing by the
disk driver. We expect the clock time to increase also when we write to a disk file, but it doesn't
increase significantly for this test, which indicates that our writes go to the system cache, and we
don't measure the cost to actually write the data to disk.

When we enable synchronous writes, the system time and the clock time should increase
significantly. As the third row shows, the time for writing synchronously is about the same as when
we used delayed writes. This implies that the Linux ext 2 file system isn't honoring the O_SYNC flag.
This suspicion is supported by the sixth line, which shows that the time to do synchronous writes
followed by a call to f sync is just as large as calling f sync after writing the file without synchronous
writes (line 5). After writing a file synchronously, we expect that a call to f sync will have no effect.

Figure 3.13 shows timing results for the same tests on Mac OS X 10.3. Note that the times match our
expectations: synchronous writes are far more expensive than delayed writes, and using f sync with
synchronous writes makes no measurable difference. Note also that adding a call to f sync at the end



of the delayed writes makes no measurable difference. It is likely that the operating system flushed
previously written data to disk as we were writing new data to the file, so by the time that we called
f sync, very little work was left to be done.

Compare fsync and f dat async, which update a file's contents when we say so, with the O _SYNC flag,
which updates a file's contents every time we write to the file.

Figure 3.11. Turn on one or more of the file status flags for a descriptor

#i ncl ude "apue. h"
#i nclude <fcntl. h>

voi d
set fl(int fd, int flags) /* flags are file status flags to turn on */

{

i nt val ;

if ((val = fentl(fd, F_GETFL, 0)) < 0)
err_sys("fentl F_GETFL error");

val | = flags; /* turn on flags */

if (fentl(fd, F_SETFL, val) < 0)
err_sys("fcntl F_SETFL error");

}
Figure 3.12. Linux ext 2 timing results using various synchronization
mechanisms
Operation User CPU System CPU Clock time
P (seconds) (seconds) (seconds)
read time from Figure 3.5 for BUFFSI ZE = 0.03 0.16 6.86
4,096
normal wri t e to disk file 0.02 0.30 6.87
wri t e to disk file with O _SYNC set 0.03 0.30 6.83
wri t e to disk followed by f dat async 0.03 0.42 18.28
writ e to disk followed by fsync 0.03 0.37 17.95
write to disk with O SYNC set followed by 0.05 0.44 17.95
fsync




Figure 3.13. Mac OS X timing results using various synchronization
mechanisms

Operation User CPU System CPU Clock time
(seconds) (seconds) (seconds)
wite to/dev/null 0.06 0.79 4.33
normal write to disk file 0.05 3.56 14.40
wri t e to disk file with O FSYNC set 0.13 9.53 22.48
writ e to disk followed by fsync 0.11 3.31 14.12
write to disk with O FSYNC set followed by 0.17 9.14 22.12
fsync

With this example, we see the need for fcnt| . Our program operates on a descriptor (standard
output), never knowing the name of the file that was opened by the shell on that descriptor. We can't
set the O_SYNC flag when the file is opened, since the shell opened the file. With fcnt| , we can modify
the properties of a descriptor, knowing only the descriptor for the open file. We'll see another need
for fcnt1 when we describe nonblocking pipes (Section 15.2), since all we have with a pipe is a

descriptor.
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3.15.i oct| Function

The i oct! function has always been the catchall for 1/0 operations. Anything that couldn't be
expressed using one of the other functions in this chapter usually ended up being specified with an

i octl . Terminal 1/0 was the biggest user of this function. (When we get to Chapter 18, we'll see that
POSIX.1 has replaced the terminal 1/0 operations with separate functions.)

#i ncl ude <uni std. h> /[* SystemV */

#i ncl ude <sys/ioctl.h> /* BSD and Linux */
#i ncl ude <stropts. h> /* XSI STREAMS */
int ioctl(int filedes, int request, ...);

Returns: 1 on error, something else if OK

The i oct| function is included in the Single UNIX Specification only as an extension for dealing
with STREAMS devices [Rago 1993]. UNIX System implementations, however, use it for many
miscellaneous device operations. Some implementations have even extended it for use with
regular files.

The prototype that we show corresponds to POSIX.1. FreeBSD 5.2.1 and Mac OS X 10.3 declare the
second argument as an unsi gned | ong. This detail doesn't matter, since the second argument is
always a #def i ned name from a header.

For the ISO C prototype, an ellipsis is used for the remaining arguments. Normally, however, there is
only one more argument, and it's usually a pointer to a variable or a structure.

In this prototype, we show only the headers required for the function itself. Normally, additional
device-specific headers are required. For example, the i oct| commands for terminal 1/0, beyond the
basic operations specified by POSIX.1, all require the <t er mi os. h> header.

Each device driver can define its own set of i oct| commands. The system, however, provides generic

i oct| commands for different classes of devices. Examples of some of the categories for these
generic i oct| commands supported in FreeBSD are summarized in Figure 3.14.

Figure 3.14. Common FreeBSD i oct| operations



Constant Number of
Category Header .
names ioctls
disk labels DI Oxxx <sys/ di skl abel . h> 6
file 170 FI Oxxx <sys/filio.h> 9
mag tape 1/0 MTT Oxxx <sys/ntio.h> 11
socket 1/0 Sl Oxxx <sys/ socki o. h> 60
terminal 1/0 Tl Oxxx <sys/ttycom h> 44

The mag tape operations allow us to write end-of-file marks on a tape, rewind a tape, space forward
over a specified number of files or records, and the like. None of these operations is easily expressed
in terms of the other functions in the chapter (read, wite, | seek, and so on), so the easiest way to
handle these devices has always been to access their operations using i oct | .

We use the i oct| function in Section 14.4 when we describe the STREAMS system, in Section 18.12
to fetch and set the size of a terminal's window, and in Section 19.7 when we access the advanced
features of pseudo terminals.
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3.16. / dev/fd

Newer systems provide a directory named / dev/ f d whose entries are files named 0, 1, 2, and so on.
Opening the file / dev/ f d/ n is equivalent to duplicating descriptor n, assuming that descriptor n is
open.

The / dev/ f d feature was developed by Tom Duff and appeared in the 8th Edition of the
Research UNIX System. It is supported by all of the systems described in this book: FreeBSD
5.2.1, Linux 2.4.22, Mac OS X 10.3, and Solaris 9. It is not part of POSIX.1.

In the function call

fd = open("/dev/fd/ 0", node);

most systems ignore the specified node, whereas others require that it be a subset of the mode used
when the referenced file (standard input, in this case) was originally opened. Because the previous
open is equivalent to

fd = dup(0);

the descriptors 0 and f d share the same file table entry (Eigure 3.8). For example, if descriptor O was
opened read-only, we can only read on fd. Even if the system ignores the open mode, and the call

fd = open("/dev/fd/ 0", O RDVWR);

succeeds, we still can't write to fd.

We can also call creat with a / dev/ f d pathname argument, as well as specifying O CREAT in a call to
open. This allows a program that calls cr eat to still work if the pathname argument is / dev/fd/ 1, for
example.

Some systems provide the pathnames / dev/ st di n, / dev/ st dout, and / dev/ st derr . These pathnames
are equivalent to / dev/fd/ 0, / dev/fd/ 1, and / dev/ fd/ 2.

The main use of the / dev/ fd files is from the shell. It allows programs that use pathname arguments
to handle standard input and standard output in the same manner as other pathnames. For example,
the cat (1) program specifically looks for an input filename of - and uses this to mean standard input.
The command



filter file2 | cat filel - file3 | Ipr

is an example. First, cat reads fil el, next its standard input (the output of the fil ter program on
file2), thenfile3. If/dev/fd is supported, the special handling of - can be removed from cat , and
we can enter

filter file2 | cat filel /dev/fd/O file3 | Ipr

The special meaning of - as a command-line argument to refer to the standard input or standard
output is a kludge that has crept into many programs. There are also problems if we specify - as the
first file, as it looks like the start of another command-line option. Using / dev/ f d is a step toward
uniformity and cleanliness.
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3.17. Summary

This chapter has described the basic 1/0 functions provided by the UNIX System. These are often
called the unbuffered 170 functions because each read or wit e invokes a system call into the kernel.
Using only read and wi t e, we looked at the effect of various 1/0 sizes on the amount of time
required to read a file. We also looked at several ways to flush written data to disk and their effect on
application performance.

Atomic operations were introduced when multiple processes append to the same file and when
multiple processes create the same file. We also looked at the data structures used by the kernel to
share information about open files. We'll return to these data structures later in the text.

We also described the i oct| and fcntl functions. We return to both of these functions in Chapter 14,
where we'll use i oct| with the STREAMS 1/0 system, and fcnt!| for record locking.
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Exercises

3.1 When reading or writing a disk file, are the functions described in this chapter really
unbuffered? Explain.

3.2 Write your own dup2 function that performs the same service as the dup2 function
described in Section 3.12, without calling the fcnt| function. Be sure to handle errors
correctly.

3.3 Assume that a process executes the following three function calls:

fdl = open(pat hnane, oflags);
fd2 = dup(fdl);
fd3 = open(pat hnane, oflags);

Draw the resulting picture, similar to Figure 3.8. Which descriptors are affected by an
fcntl on fdl with a command of F_SETFD? Which descriptors are affected by an fcnt| on

fd1 with a command of F_SETFL?

3.4 The following sequence of code has been observed in various programs:

dup2(fd, 0);
dup2(fd, 1);
dup2(fd, 2);
if (fd > 2)
close(fd);

To see why the i f test is needed, assume that f d is 1 and draw a picture of what
happens to the three descriptor entries and the corresponding file table entry with each
call to dup2. Then assume that fd is 3 and draw the same picture.

3.5 The Bourne shell, Bourne-again shell, and Korn shell notation

digit1>&digit2

says to redirect descriptor digitl to the same file as descriptor digit2. What is the
difference between the two commands



.la.out > outfile 2>&1
./a.out 2>&1 > outfile

(Hint: the shells process their command lines from left to right.)
If you open a file for readwrite with the append flag, can you still read from anywhere in

the file using | seek? Can you use | seek to replace existing data in the file? Write a
program to verify this.
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4.1. Introduction

In the previous chapter we covered the basic functions that perform 1/0. The discussion centered
around 1/0 for regular filesopening a file, and reading or writing a file. We'll now look at additional
features of the file system and the properties of a file. We'll start with the st at functions and go
through each member of the st at structure, looking at all the attributes of a file. In this process, we'll
also describe each of the functions that modify these attributes: change the owner, change the
permissions, and so on. We'll also look in more detail at the structure of a UNIX file system and
symbolic links. We finish this chapter with the functions that operate on directories, and we develop a
function that descends through a directory hierarchy.
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4.2.stat,fstat,and | stat Functions

The discussion in this chapter centers around the three st at functions and the information they

return.

View full width

#i ncl ude <sys/stat.h>

™.tat *restrict buf);

™tat *restrict buf);

int stat(const char *restrict pathname struct

int fstat(int filedes, struct stat

int Istat(const char *restrict pathname, struct

* buf) ;

All three return: O if OK, 1 on error

Given a pathname, the st at function returns a structure of information about the named file. The
fstat function obtains information about the file that is already open on the descriptor filedes. The

I stat function is similar to st at , but when the named file is a symboliclink, | st at returns information
about the symbolic link, not the file referenced by the symbolic link. (We'll need | st at in Section 4.21
when we walk down a directory hierarchy. We describe symbolic links in more detail in Section 4.16.)

The second argument is a pointer to a structure that we must supply. The function fills in the
structure pointed to by buf. The definition of the structure can differ among implementations, but it

could look like

struct stat {

node_t st _node;

i no_t st _ino;
dev_t st _dev;
dev_t st _rdev;
nlink t st _nlink;
uid_t st _uid;
gid t st_gid;
of f t st _si ze;
time_t st _atine;
tinme_t st_ntine;
time t st_ctineg;

/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*

file type & node (pernissions) */
i -node nunber (serial numnber) */
devi ce nunber (file systen) */
devi ce nunber for special files */
nunmber of |inks */

user I D of owner */

group I D of owner */

size in bytes, for regular files */
time of last access */

time of last nodification */

time of last file status change */



bl ksi ze_t st_bl ksi ze; /* best 1/0 bl ock size */
bl kent _t st _bl ocks; /* nunber of disk blocks allocated */

b

The st _rdev, st_bl ksi ze, and st _bl ocks fields are not required by POSIX.1. They are defined as
XSl extensions in the Single UNIX Specification.

Note that each member is specified by a primitive system data type (see Section 2.8). We'll go
through each member of this structure to examine the attributes of a file.

The biggest user of the st at functions is probably the | s -1 command, to learn all the information
about a file.
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4.3. File Types

We've talked about two different types of files so far: regular files and directories. Most files on a
UNIX system are either regular files or directories, but there are additional types of files. The types
are:

1. Regular file. The most common type of file, which contains data of some form. There is no
distinction to the UNIX kernel whether this data is text or binary. Any interpretation of the
contents of a regular file is left to the application processing the file.

One notable exception to this is with binary executable files. To execute a program, the
kernel must understand its format. All binary executable files conform to a format that
allows the kernel to identify where to load a program'’s text and data.

2. Directory file. A file that contains the names of other files and pointers to information on these
files. Any process that has read permission for a directory file can read the contents of the
directory, but only the kernel can write directly to a directory file. Processes must use the
functions described in this chapter to make changes to a directory.

3. Block special file. A type of file providing buffered 1/0 access in fixed-size units to devices such
as disk drives.

4. Character special file. A type of file providing unbuffered 1/0 access in variable-sized units to
devices. All devices on a system are either block special files or character special files.

5. FIFO. A type of file used for communication between processes. It's sometimes called a named
pipe. We describe FIFOs in Section 15.5.

6. Socket. A type of file used for network communication between processes. A socket can also be
used for non-network communication between processes on a single host. We use sockets for
interprocess communication in Chapter 16.

7. Symbolic link. A type of file that points to another file. We talk more about symbolic links in
Section 4.16.

The type of a file is encoded in the st _node member of the st at structure. We can determine the file
type with the macros shown in Figure 4.1. The argument to each of these macros is the st _node
member from the st at structure.

Figure 4.1. File type
macros in <sys/stat. h>



Macro Type of file

S | SREGH) regular file

S_I'SDIR() | directory file

S | SCHR() character special file

S | SBLK() block special file

S_I SFI FQ() | pipe or FIFO

S_ISLNK() | symbolic link

S | SSOCK() | socket

POSIX.1 allows implementations to represent interprocess communication (IPC) objects, such as
message queues and semaphores, as files. The macros shown in Figure 4.2 allow us to determine the
type of IPC object from the st at structure. Instead of taking the st _node member as an argument,
these macros differ from those in Figure 4.1 in that their argument is a pointer to the st at structure.

Figure 4.2. 1PC type macros
IN <sys/stat. h>

Macro Type of object

S TYPEI SMY) message queue

S TYPEI SSEM ) semaphore

S TYPEI SSHV ) shared memory
object

Message queues, semaphores, and shared memory objects are discussed in Chapter 15. However,
none of the various implementations of the UNIX System discussed in this book represent these
objects as files.

Example

The program in Figure 4.3 prints the type of file for each command-line argument.
Sample output from Figure 4.3 is
$ ./a.out /etc/passwd /etc /dev/initctl /dev/log /dev/tty \

> [/ dev/scsi/host0/busO/target0/ | un0/cd /dev/cdrom
/ etc/ passwd: regul ar



/etc: directory

/dev/initctl: fifo

/dev/ | og: socket

/dev/tty: character special

/ dev/ scsi/ host 0/ busO/target 0/ 1 un0/ cd: bl ock speci al
/dev/ cdrom synbolic |ink

(Here, we have explicitly entered a backslash at the end of the first command line, telling the shell
that we want to continue entering the command on another line. The shell then prompts us with its
secondary prompt, >, on the next line.) We have specifically used the | st at function instead of the
st at function to detect symbolic links. If we used the st at function, we would never see symbolic
links.

To compile this program on a Linux system, we must define _GNU_SOURCE to include the definition of
the S_| SSOCK macro.

Figure 4.3. Print type of file for each command-line argument

#i ncl ude "apue. h"

i nt
mai n(int argc, char *argv[])
{
i nt i
struct stat buf;
char *ptr;
for (i =1; i <argc; i++) {

printf("%: ", argv[i]);
if (Istat(argv[i], &uf) < 0) {
err_ret("lIstat error");

conti nue;

}

if (S_I SREQ buf.st_npde))
ptr = "regular";

else if (S_ISD R(buf.st _node))
ptr = "directory"”;

else if (S_ISCHR(buf.st node))
ptr = "character special";

else if (S_ISBLK(buf.st node))
ptr = "block special”;

else if (S_ISFIFQ buf.st node))
ptr = "fifo";

else if (S_ISLNK(buf.st node))
ptr = "synbolic Iink";
else if (S_ISSCOCK(buf.st nopde))



ptr = "socket";
el se
ptr = "** unknown node **";
printf("%\n", ptr);
}
exit(0);

Historically, early versions of the UNIX System didn't provide the S | Sxxx macros. Instead, we had to
logically AND the st _node value with the mask S_| FMI and then compare the result with the constants
whose names are S_| Fxxx. Most systems define this mask and the related constants in the file
<sys/stat. h>. If we examine this file, we'll find the S_| SDI R macro defined something like

#define S | SDIR(nmode) (((node) & S IFMIN) == S | FDI R)

We've said that regular files are predominant, but it is interesting to see what percentage of the files
on a given system are of each file type. Figure 4.4 shows the counts and percentages for a Linux
system that is used as a single-user workstation. This data was obtained from the program that we
show in Section 4.21.

Figure 4.4. Counts and
percentages of different file

types
File type Count Percentage

regular file 226,856 | 88.22 %
directory 23,017 8.95
symbolic link 6,442 2.51
character 447 0.17
special

block special 312 0.12
socket 69 0.03
FIFO 1 0.00
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4.4. Set-User-1D and Set-Group-1D

Every process has six or more IDs associated with it. These are shown in Figure 4.5.

Figure 4.5. User IDs and group IDs associated
with each process

real user ID

who we really are
real group ID

effective user ID
effective group 1D
supplementary group IDs

used for file access permission
checks

saved set-user-1D

saved set-group-ID saved by exec functions

e The real user ID and real group ID identify who we really are. These two fields are taken from
our entry in the password file when we log in. Normally, these values don't change during a
login session, although there are ways for a superuser process to change them, which we
describe in Section 8.11.

e The effective user ID, effective group ID, and supplementary group IDs determine our file
access permissions, as we describe in the next section. (We defined supplementary group IDs in
Section 1.8.)

e The saved set-user-I1D and saved set-group-ID contain copies of the effective user ID and the
effective group ID when a program is executed. We describe the function of these two saved
values when we describe the set ui d function in Section 8.11.

The saved IDs are required with the 2001 version of POSIX.1. They used to be optional in
older versions of POSIX. An application can test for the constant _PQSI X_SAVED | DS at
compile time or can call sysconf with the _SC_SAVED | DS argument at runtime, to see
whether the implementation supports this feature.

Normally, the effective user ID equals the real user ID, and the effective group ID equals the real
group ID.

Every file has an owner and a group owner. The owner is specified by the st _ui d member of the st at
structure; the group owner, by the st _gi d member.

When we execute a program file, the effective user ID of the process is usually the real user ID, and
the effective group ID is usually the real group ID. But the capability exists to set a special flag in the



file's mode word (st _npde) that says "when this file is executed, set the effective user ID of the
process to be the owner of the file (st _ui d)." Similarly, another bit can be set in the file's mode word
that causes the effective group ID to be the group owner of the file (st _gi d). These two bits in the
file's mode word are called the set-user-1D bit and the set-group-ID bit.

For example, if the owner of the file is the superuser and if the file's set-user-ID bit is set, then while
that program file is running as a process, it has superuser privileges. This happens regardless of the
real user ID of the process that executes the file. As an example, the UNIX System program that
allows anyone to change his or her password, passwd(1), is a set-user-1D program. This is required so
that the program can write the new password to the password file, typically either / et c/ passwd or

/ et ¢/ shadow, files that should be writable only by the superuser. Because a process that is running
set-user-1D to some other user usually assumes extra permissions, it must be written carefully. We'll
discuss these types of programs in more detail in Chapter 8.

Returning to the st at function, the set-user-1D bit and the set-group-ID bit are contained in the file's
st _node value. These two bits can be tested against the constants S_| SU Dand S_| SG D.
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4.5. File Access Permissions

The st _node value also encodes the access permission bits for the file. When we say file, we mean
any of the file types that we described earlier. All the file typesdirectories, character special files, and
so onhave permissions. Many people think only of regular files as having access permissions.

There are nine permission bits for each file, divided into three categories. These are shown in Figure
4.6.

Figure 4.6. The nine
file access permission
bits, from <sys/stat. h>

st _node mask Meaning

S | RUSR user-read

S | WUSR user-write

S | XUSR user-
execute

S | RGRP group-read

S | WGRP group-write

S_| XGRP group-
execute

S | ROTH other-read

S | WOTH other-write

S_I XOTH other-
execute

The term user in the first three rows in Figure 4.6 refers to the owner of the file. The chnod(1)
command, which is typically used to modify these nine permission bits, allows us to specify u for user
(owner), g for group, and o for other. Some books refer to these three as owner, group, and world;
this is confusing, as the chnod command uses o to mean other, not owner. We'll use the terms user,
group, and other, to be consistent with the chnod command.

The three categories in Figure 4.6read, write, and executeare used in various ways by different
functions. We'll summarize them here, and return to them when we describe the actual functions.



e The first rule is that whenever we want to open any type of file by name, we must have execute
permission in each directory mentioned in the name, including the current directory, if it is
implied. This is why the execute permission bit for a directory is often called the search bit.

For example, to open the file / usr/i ncl ude/ st di o. h, we need execute permission in the
directory / , execute permission in the directory / usr, and execute permission in the directory
/usr/include. We then need appropriate permission for the file itself, depending on how we're
trying to open it: read-only, readwrite, and so on.

If the current directory is / usr/i ncl ude, then we need execute permission in the current
directory to open the file st di 0. h. This is an example of the current directory being implied, not
specifically mentioned. It is identical to our opening the file . / st di o. h.

Note that read permission for a directory and execute permission for a directory mean different
things. Read permission lets us read the directory, obtaining a list of all the filenames in the
directory. Execute permission lets us pass through the directory when it is a component of a
pathname that we are trying to access. (We need to search the directory to look for a specific
filename.)

Another example of an implicit directory reference is if the PATH environment variable, described
in Section 8.10, specifies a directory that does not have execute permission enabled. In this
case, the shell will never find executable files in that directory.

e The read permission for a file determines whether we can open an existing file for reading: the
O _RDONLY and O RDWR flags for the open function.

e The write permission for a file determines whether we can open an existing file for writing: the
O WRONLY and O RDWR flags for the open function.

¢ We must have write permission for a file to specify the O TRUNC flag in the open function.

e We cannot create a new file in a directory unless we have write permission and execute
permission in the directory.

e To delete an existing file, we need write permission and execute permission in the directory
containing the file. We do not need read permission or write permission for the file itself.

e Execute permission for a file must be on if we want to execute the file using any of the six exec
functions (Section 8.10). The file also has to be a regular file.

The file access tests that the kernel performs each time a process opens, creates, or deletes a file
depend on the owners of the file (st _ui d and st _gi d), the effective IDs of the process (effective user
ID and effective group ID), and the supplementary group IDs of the process, if supported. The two
owner IDs are properties of the file, whereas the two effective IDs and the supplementary group IDs
are properties of the process. The tests performed by the kernel are as follows.

1. If the effective user ID of the process is O (the superuser), access is allowed. This gives the
superuser free rein throughout the entire file system.

2. If the effective user ID of the process equals the owner ID of the file (i.e., the process owns the
file), access is allowed if the appropriate user access permission bit is set. Otherwise, permission



is denied. By appropriate access permission bit, we mean that if the process is opening the file
for reading, the user-read bit must be on. If the process is opening the file for writing, the user-
write bit must be on. If the process is executing the file, the user-execute bit must be on.

3. If the effective group ID of the process or one of the supplementary group IDs of the process
equals the group ID of the file, access is allowed if the appropriate group access permission bit
is set. Otherwise, permission is denied.

4. If the appropriate other access permission bit is set, access is allowed. Otherwise, permission is
denied.

These four steps are tried in sequence. Note that if the process owns the file (step 2), access is

granted or denied based only on the user access permissions; the group permissions are never
Innked at Similarlv/ if the nrocecs dnec Nt nwwn the file hiit helonng tn Aan annrnnriate Aarniin accecs
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4.6. Ownership of New Files and Directories

When we described the creation of a new file in Chapter 3, using either open or creat, we never said
what values were assigned to the user ID and group ID of the new file. We'll see how to create a new
directory in Section 4.20 when we describe the nkdi r function. The rules for the ownership of a new
directory are identical to the rules in this section for the ownership of a new file.

The user ID of a new file is set to the effective user ID of the process. POSIX.1 allows an
implementation to choose one of the following options to determine the group ID of a new file.

1. The group ID of a new file can be the effective group ID of the process.
2. The group ID of a new file can be the group ID of the directory in which the file is being created.

FreeBSD 5.2.1 and Mac OS X 10.3 always uses the group ID of the directory as the group
ID of the new file.

The Linux ext 2 and ext 3 file systems allow the choice between these two POSIX.1 options
to be made on a file system basis, using a special flag to the nount (1) command. On Linux
2.4.22 (with the proper mount option) and Solaris 9, the group ID of a new file depends on
whether the set-group-ID bit is set for the directory in which the file is being created. If
this bit is set for the directory, the group ID of the new file is set to the group ID of the
directory; otherwise, the group ID of the new file is set to the effective group ID of the
process.

Using the second optioninheriting the group ID of the directoryassures us that all files and directories
created in that directory will have the group ID belonging to the directory. This group ownership of
files and directories will then propagate down the hierarchy from that point. This is used, for
example, in the /var/ spool / mai | directory on Linux.

As we mentioned, this option for group ownership is the default for FreeBSD 5.2.1 and Mac OS
X 10.3, but an option for Linux and Solaris. Under Linux 2.4.22 and Solaris 9, we have to enable
the set-group-ID bit, and the nkdi r function has to propagate a directory's set-group-ID bit
automatically for this to work. (This is described in Section 4.20.)
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4.7. access Function

As we described earlier, when we open a file, the kernel performs its access tests based on the
effective user and group IDs. There are times when a process wants to test accessibility based on the
real user and group IDs. This is useful when a process is running as someone else, using either the
set-user-1D or the set-group-ID feature. Even though a process might be set-user-1D to root, it could
still want to verify that the real user can access a given file. The access function bases its tests on the
real user and group IDs. (Replace effective with real in the four steps at the end of Section 4.5.)

#i ncl ude <uni std. h>

i nt access(const char *pathname, int mode);

Returns: O if OK, 1 on error

The mode is the bitwise OR of any of the constants shown in Figure 4.7.

Figure 4.7. The mode
constants for access
function, from <uni std. h>

mode Description

R K | test for read permission

WK | test for write permission

X_K | test for execute permission

F_OK | test for existence of file

Example

Figure 4.8 shows the use of the access function.

Here is a sample session with this program:



$1s -1 a.out

-rWXrwxr-x 1 sar 15945 Nov 30 12:10 a. out

$ ./a.out a.out

read access K

open for reading OK

$ 1s -1 /etc/shadow

“r-------- 1 root 1315 Jul 17 2002 /etc/shadow
$ ./a.out /etc/shadow

access error for /etc/shadow. Pernission denied

open error for /etc/shadow. Perm ssion denied

$ su become superuser
Passwor d: enter superuser password
# chown root a.out change file's user 1D to root
# chnod u+s a. out and turn on set-user-1D bit
# 1s -1 a.out check owner and SUID bit
-rwsrwxr-x 1 root 15945 Nov 30 12: 10 a.out
# exit go back to normal user

$ ./a.out /etc/shadow
access error for /etc/shadow. Pern ssion denied
open for reading OK

In this example, the set-user-I1D program can determine that the real user cannot normally read the
file, even though the open function will succeed.

Figure 4.8. Example of access function

#i ncl ude "apue. h"
#i nclude <fcntl. h>

i nt
mai n(int argc, char *argv[])
{
if (argc != 2)
err_quit("usage: a.out <pathnane>");
if (access(argv[l], R < 0)
err_ret("access error for %", argv[1]);
el se
printf("read access OK\n");
if (open(argv[1l], O RDONLY) < 0)
err_ret("open error for %", argv[1]);
el se
printf("open for reading OK\n");
exit(0);



In the preceding example and in Chapter 8, we'll sometimes switch to become the superuser, to
demonstrate how something works. If you're on a multiuser system and do not have superuser
permission, you won't be able to duplicate these examples completely.
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4.8. umask Function

Now that we've described the nine permission bits associated with every file, we can describe the file
mode creation mask that is associated with every process.

The umask function sets the file mode creation mask for the process and returns the previous value.
(This is one of the few functions that doesn't have an error return.)

#i ncl ude <sys/stat. h>

node_t umask(node_t cmask);

Returns: previous file mode creation mask

The cmask argument is formed as the bitwise OR of any of the nine constants from Figure 4.6:
S I RUSR, S | WUSR, and so on.

The file mode creation mask is used whenever the process creates a new file or a new directory.
(Recall from Sections 3.3 and 3.4 our description of the open and creat functions. Both accept a
mode argument that specifies the new file's access permission bits.) We describe how to create a new
directory in Section 4.20. Any bits that are on in the file mode creation mask are turned off in the
file's mode.

Example

The program in Figure 4.9 creates two files, one with a umask of O and one with a unask that disables
all the group and other permission bits.

If we run this program, we can see how the permission bits have been set.

$ umask first print the current file mode creation mask

002

$ ./a. out

$1s -1 foo bar

STW-- - - 1 sar 0 Dec 7 21:20 bar

-rwrwrw 1 sar 0 Dec 7 21:20 foo

$ umask see if the file mode creation mask changed

002



Figure 4.9. Example of unask function

#i ncl ude "apue. h"
#i ncl ude <fcntl. h>

#defi ne RWRWRW (S_I RUSR| S_| WUSR| S_| RGRP| S_I WGRP| S_| ROTH| S_I WOTH)

i nt
mai n( voi d)
{
umask(0);
if (creat("foo", RARVRW < 0)
err_sys("creat error for foo");
umask(S_ IRGRP | S IWGRP | S IROTH | S | WOTH);
if (creat("bar", RARWVRW < 0)
err_sys("creat error for bar");
exit(0);
}

Most users of UNIX systems never deal with their umask value. It is usually set once, on login, by the
shell's start-up file, and never changed. Nevertheless, when writing programs that create new files, if
we want to ensure that specific access permission bits are enabled, we must modify the umask value
while the process is running. For example, if we want to ensure that anyone can read a file, we
should set the unask to 0. Otherwise, the umask value that is in effect when our process is running can
cause permission bits to be turned off.

In the preceding example, we use the shell's umask command to print the file mode creation mask
before we run the program and after. This shows us that changing the file mode creation mask of a
process doesn't affect the mask of its parent (often a shell). All of the shells have a built-in umask
command that we can use to set or print the current file mode creation mask.

Users can set the umask value to control the default permissions on the files they create. The value is
expressed in octal, with one bit representing one permission to be masked off, as shown in Figure
4.10. Permissions can be denied by setting the corresponding bits. Some common unmask values are
002 to prevent others from writing your files, 022 to prevent group members and others from writing
your files, and 027 to prevent group members from writing your files and others from reading,
writing, or executing your files.

Figure 4.10. The
umask file access

permission bits

Mask bit Meaning

0400 user-read




Mask bit Meaning
0200 user-write
0100 user-execute
0040 group-read
0020 group-write
0010 group-

execute
0004 other-read
0002 other-write
0001 other-

execute

The Single UNIX Specification requires that the shell support a symbolic form of the unask command.
Unlike the octal format, the symbolic format specifies which permissions are to be allowed (i.e., clear
in the file creation mask) instead of which ones are to be denied (i.e., set in the file creation mask).
Compare both forms of the command, shown below.

$ unask first print the current file mode creation mask
002

$ unask -S print the symbolic form

U=r WX, g=r WX, O=r X

$ umask 027 change the file mode creation mask

$ umask -S print the symbolic form

U=r wx, g=rx, o=
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4.9. chnod and f chnod Functions

These two functions allow us to change the file access permissions for an existing file.

#i ncl ude <sys/stat.h>
i nt chnod(const char *pathname, node_t mode);

int fchnod(int filedes, node_t mode) ;

Both return: O if OK, 1 on error

The chnod function operates on the specified file, whereas the f chnod function operates on a file that
has already been opened.

To change the permission bits of a file, the effective user ID of the process must be equal to the
owner ID of the file, or the process must have superuser permissions.

The mode is specified as the bitwise OR of the constants shown in Figure 4.11.

Figure 4.11. The mode constants for chnod
functions, from <sys/stat. h>

mode Description
S ISU D set-user-1D on execution
S ISE@D set-group-ID on execution
S | SVTX saved-text (sticky bit)
S | R\KU read, write, and execute by user
(owner)

read by user (owner)
S | RUSR

write by user (owner)
S | WUSR




mode Description
execute by user (owner)
S | XUSR
S | RWKG read, write, and execute by group
read by group
S | RGRP
write by group
S | WGRP
execute by group
S | XGRP
S | RWKO read, write, and execute by other
(world)
read by other (world)
S | ROTH
write by other (world)
S | WOTH
execute by other (world)
S | XOTH

Note that nine of the entries in Figure 4.11 are the nine file access permission bits from Figure 4.6.
We've added the two set-1D constants (S_| SUI Dand S_| SA D), the saved-text constant (S_I SVTX), and
the three combined constants (S_I| RW\KU, S_| R\XG, and S_I RW\KO).

The saved-text bit (S_I SVTX) is not part of POSIX.1. It is defined as an XSl extension in the
Single UNIX Specification. We describe its purpose in the next section.

Example

Recall the final state of the files f oo and bar when we ran the program in Figure 4.9 to demonstrate
the umask function:

$1s -1 foo bar
STW- - - - - 1 sar 0 Dec 7 21:20 bar
SrwWrwrw 1 sar 0 Dec 7 21:20 foo

The program shown in Figure 4.12 modifies the mode of these two files.

After running the program in Figure 4.12, we see that the final state of the two files is

$Is -1 foo bar



-rwWr--r-- 1 sar 0 Dec 7 21:20 bar
-rw-rwSrw 1 sar 0 Dec 7 21:20 foo

In this example, we have set the permissions of the file bar to an absolute value, regardless of the
current permission bits. For the file f oo, we set the permissions relative to their current state. To do
this, we first call st at to obtain the current permissions and then modify them. We have explicitly
turned on the set-group-ID bit and turned off the group-execute bit. Note that the | s command lists
the group-execute permission as S to signify that the set-group-ID bit is set without the group-
execute bit being set.

On Solaris, the | s command displays an | instead of an S to indicate that mandatory file and
record locking has been enabled for this file. This applies only to regular files, but we'll discuss
this more in Section 14.3.

Finally, note that the time and date listed by the | s command did not change after we ran the
program in Figure 4.12. We'll see in Section 4.18 that the chnod function updates only the time that
the i-node was last changed. By default, the I s -1 lists the time when the contents of the file were
last modified.

Figure 4.12. Example of chnod function

#i ncl ude "apue. h"

i nt
mai n( voi d)
{
struct stat st at buf;
/[* turn on set-group-ID and turn off group-execute */
if (stat("foo", &statbuf) < 0)
err_sys("stat error for foo");
if (chnod("foo", (statbuf.st nbde & ~S IXGRP) | S I1SA@ D) < 0)
err_sys("chnod error for foo");
/* set absolute node to "rwr--r--" */
if (chnod("bar", SIRUSR| SIWSR | SIRGRP | S IROTH < 0)
err_sys("chnod error for bar");
exit(0);
}

The chnod functions automatically clear two of the permission bits under the following conditions:

¢ On systems, such as Solaris, that place special meaning on the sticky bit when used with



regular files, if we try to set the sticky bit (S_I SVTX) on a regular file and do not have superuser
privileges, the sticky bit in the mode is automatically turned off. (We describe the sticky bit in
the next section.) This means that only the superuser can set the sticky bit of a regular file. The
reason is to prevent malicious users from setting the sticky bit and adversely affecting system
performance.

On FreeBSD 5.2.1, Mac OS X 10.3, and Solaris 9, only the superuser can set the sticky bit
on a regular file. Linux 2.4.22 places no such restriction on the setting of the sticky bit,
because the bit has no meaning when applied to regular files on Linux. Although the bit
also has no meaning when applied to regular files on FreeBSD and Mac OS X, these
systems prevent everyone but the superuser from setting it on a regular file.

e Itis possible that the group ID of a newly created file is a group that the calling process does
not belong to. Recall from Section 4.6 that it's possible for the group ID of the new file to be the
group ID of the parent directory. Specifically, if the group ID of the new file does not equal
either the effective group ID of the process or one of the process's supplementary group IDs
and if the process does not have superuser privileges, then the set-group-ID bit is automatically
turned off. This prevents a user from creating a set-group-ID file owned by a group that the
user doesn't belong to.

FreeBSD 5.2.1, Linux 2.4.22, Mac OS X 10.3, and Solaris 9 add another security feature to
try to prevent misuse of some of the protection bits. If a process that does not have
superuser privileges writes to a file, the set-user-1D and set-group-ID bits are
automatically turned off. If malicious users find a set-group-ID or a set-user-ID file they
can write to, even though they can modify the file, they lose the special privileges of the
file.
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4.10. Sticky Bit

The S_I SVTX bit has an interesting history. On versions of the UNIX System that predated demand
paging, this bit was known as the sticky bit. If it was set for an executable program file, then the first
time the program was executed, a copy of the program's text was saved in the swap area when the
process terminated. (The text portion of a program is the machine instructions.) This caused the
program to load into memory more quickly the next time it was executed, because the swap area
was handled as a contiguous file, compared to the possibly random location of data blocks in a
normal UNIX file system. The sticky bit was often set for common application programs, such as the
text editor and the passes of the C compiler. Naturally, there was a limit to the number of sticky files
that could be contained in the swap area before running out of swap space, but it was a useful
technique. The name sticky came about because the text portion of the file stuck around in the swap
area until the system was rebooted. Later versions of the UNIX System referred to this as the saved-
text bit; hence, the constant S_| SVTX. With today’s newer UNIX systems, most of which have a virtual
memory system and a faster file system, the need for this technique has disappeared.

On contemporary systems, the use of the sticky bit has been extended. The Single UNIX Specification
allows the sticky bit to be set for a directory. If the bit is set for a directory, a file in the directory can
be removed or renamed only if the user has write permission for the directory and one of the
following:

e Owns the file
e Owns the directory

e Is the superuser

The directories /t np and / var/ spool / uucppubl i c are typical candidates for the sticky bitthey are
directories in which any user can typically create files. The permissions for these two directories are
often read, write, and execute for everyone (user, group, and other). But users should not be able to
delete or rename files owned by others.

The saved-text bit is not part of POSIX.1. It is an XSl extension to the basic POSIX.1
functionality defined in the Single UNIX Specification, and is supported by FreeBSD 5.2.1, Linux
2.4.22, Mac OS X 10.3, and Solaris 9.

Solaris 9 places special meaning on the sticky bit if it is set on a regular file. In this case, if none
of the execute bits is set, the operating system will not cache the contents of the file.
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4.11. chown, f chown, and | chown Functions

The chown functions allow us to change the user ID of a file and the group ID of a file.

View full width
#i ncl ude <uni std. h>

i nt chown(const char *pathname, uid_t owner, gid_t
=yroup) ;

int fchown(int filedes, uid_t owner, gid_t group);

int | chown(const char *pathname, uid_t owner,
=id t group);

All three return: O if OK, 1 on error

These three functions operate similarly unless the referenced file is a symbolic link. In that case,
| chown changes the owners of the symbolic link itself, not the file pointed to by the symbolic link.

The | chown function is an XSI extension to the POSIX.1 functionality defined in the Single UNIX
Specification. As such, all UNIX System implementations are expected to provide it.

If either of the arguments owner or group is -1, the corresponding ID is left unchanged.

Historically, BSD-based systems have enforced the restriction that only the superuser can change the
ownership of a file. This is to prevent users from giving away their files to others, thereby defeating
any disk space quota restrictions. System V, however, has allowed any user to change the ownership
of any files they own.

POSIX.1 allows either form of operation, depending on the value of _POSI X_CHOAN_RESTRI CTED.

With Solaris 9, this functionality is a configuration option, whose default value is to enforce the
restriction. FreeBSD 5.2.1, Linux 2.4.22, and Mac OS X 10.3 always enforce the chown
restriction.

Recall from Section 2.6 that the _POSI X_CHOAN_RESTRI CTED constant can optionally be defined in the
header <uni st d. h>, and can always be queried using either the pat hconf function or the f pat hconf
function. Also recall that this option can depend on the referenced file; it can be enabled or disabled
on a per file system basis. We'll use the phrase, if _POsI X_CHOM_RESTRI CTED is in effect, to mean if it
applies to the particular file that we're talking about, regardless of whether this actual constant is
defined in the header.



If _POSI X_CHOM_RESTRI CTED is in effect for the specified file, then

1. Only a superuser process can change the user ID of the file.

2. A nonsuperuser process can change the group ID of the file if the process owns the file (the
effective user ID equals the user ID of the file), owner is specified as 1 or equals the user ID of

the file, and group equals either the effective group ID of the process or one of the process's
supplementary group IDs.

This means that when _POSI X CHOMWN_RESTRI CTED is in effect, you can't change the user ID of other
users' files. You can change the group ID of files that you own, but only to groups that you belong to.

If these functions are called by a process other than a superuser process, on successful return, both
the set-user-1D and the set-group-ID bits are cleared.
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4.12. File Size

The st _si ze member of the st at structure contains the size of the file in bytes. This field is
meaningful only for regular files, directories, and symbolic links.

Solaris also defines the file size for a pipe as the number of bytes that are available for reading
from the pipe. We'll discuss pipes in Section 15.2.

For a regular file, a file size of 0 is allowed. We'll get an end-of-file indication on the first read of the
file.

For a directory, the file size is usually a multiple of a number, such as 16 or 512. We talk about
reading directories in Section 4.21.

For a symbolic link, the file size is the number of bytes in the filename. For example, in the following
case, the file size of 7 is the length of the pathname usr/1i b:

[ rwxrwxrwx 1 root 7 Sep 25 07:14 lib -> usr/lib

(Note that symbolic links do not contain the normal C null byte at the end of the name, as the length
is always specified by st _si ze.)

Most contemporary UNIX systems provide the fields st _bl ksi ze and st _bl ocks. The first is the
preferred block size for 1/0 for the file, and the latter is the actual number of 512-byte blocks that
are allocated. Recall from Section 3.9 that we encountered the minimum amount of time required to
read a file when we used st _bl ksi ze for the read operations. The standard 1/0 library, which we
describe in Chapter 5, also tries to read or write st _bl ksi ze bytes at a time, for efficiency.

Be aware that different versions of the UNIX System use units other than 512-byte blocks for
st _bl ocks. Using this value is nonportable.

Holes in a File

In Section 3.6, we mentioned that a regular file can contain "holes.” We showed an example of this in
Figure 3.2. Holes are created by seeking past the current end of file and writing some data. As an
example, consider the following:

$1s -1 core

-rWr--r-- 1 sar 8483248 Nov 18 12:18 core
$ du -s core

272 core



The size of the file core is just over 8 MB, yet the du command reports that the amount of disk space
used by the file is 272 512-byte blocks (139,264 bytes). (The du command on many BSD-derived
systems reports the number of 1,024-byte blocks; Solaris reports the number of 512-byte blocks.)
Obviously, this file has many holes.

As we mentioned in Section 3.6, the r ead function returns data bytes of O for any byte positions that

have not been written. If we execute the following, we can see that the normal 1/0 operations read
up through the size of the file:

$ wc -c core
8483248 core

The we (1) command with the - ¢ option counts the number of characters (bytes) in the file.

If we make a copy of this file, using a utility such as cat (1), all these holes are written out as actual
data bytes of O:

$ cat core > core.copy

$1s -1 core*

-rWr--r-- 1 sar 8483248 Nov 18 12:18 core
-rwrwr-- 1 sar 8483248 Nov 18 12: 27 core.copy
$ du -s core*

272 core

16592 core. copy

Here, the actual number of bytes used by the new file is 8,495,104 (512 x 16,592). The difference
between this size and the size reported by | s is caused by the number of blocks used by the file
system to hold pointers to the actual data blocks.

Interested readers should refer to Section 4.2 of Bach [1986], Sections 7.2 and 7.3 of McKusick et al.
[1996] (or Sections 8.2 and 8.3 in McKusick and Neville-Neil [2005]), and Section 14.2 of Mauro and
McDougall [2001] for additional details on the physical layout of files.
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4.13. File Truncation

There are times when we would like to truncate a file by chopping off data at the end of the file.
Emptying a file, which we can do with the O TRUNC flag to open, is a special case of truncation.

#i ncl ude <uni std. h>

int truncate(const char *pathname, off_t length);

int ftruncate(int filedes, of f_t length);

Both return: O if OK, 1 on error

These two functions truncate an existing file to length bytes. If the previous size of the file was
greater than length, the data beyond length is no longer accessible. If the previous size was less than
length, the effect is system dependent, but XSI-conforming systems will increase the file size. If the
implementation does extend a file, data between the old end of file and the new end of file will read
as 0 (i.e., a hole is probably created in the file).

The ftruncat e function is part of POSIX.1. The truncat e function is an XSI extension to the
POSIX.1 functionality defined in the Single UNIX Specification.

BSD releases prior to 4.4BSD could only make a file smaller with TRuncat e.

Solaris also includes an extension to fcnt| (F_FREESP) that allows us to free any part of a file,
not just a chunk at the end of the file.

We use ftruncat e in the program shown in Figure 13.6 when we need to empty a file after obtaining
a lock on the file.
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4.14. File Systems

To appreciate the concept of links to a file, we need a conceptual understanding of the structure of
the UNIX file system. Understanding the difference between an i-node and a directory entry that
points to an i-node is also useful.

Various implementations of the UNIX file system are in use today. Solaris, for example, supports
several different types of disk file systems: the traditional BSD-derived UNIX file system (called UFS),
a file system (called PCFS) to read and write DOS-formatted diskettes, and a file system (called
HSFS) to read CD file systems. We saw one difference between file system types in Figure 2.19. UFS
is based on the Berkeley fast file system, which we describe in this section.

We can think of a disk drive being divided into one or more partitions. Each partition can contain a file
system, as shown in Figure 4.13.

Figure 4.13. Disk drive, partitions, and a file system

[View full size image]
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The i-nodes are fixed-length entries that contain most of the information about a file.

If we examine the i-node and data block portion of a cylinder group in more detail, we could have
what is shown in Figure 4.14.

Figure 4.14. Cylinder group’s i-nodes and data blocks in more detail
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Note the following points from Figure 4.14.

e We show two directory entries that point to the same i-node entry. Every i-node has a link
count that contains the number of directory entries that point to the i-node. Only when the link
count goes to O can the file be deleted (i.e., can the data blocks associated with the file be
released). This is why the operation of "unlinking a file" does not always mean "deleting the
blocks associated with the file." This is why the function that removes a directory entry is called
unl i nk, not delete. In the st at structure, the link count is contained in the st _nl i nk member.
Its primitive system data type is nl i nk_t . These types of links are called hard links. Recall from
Section 2.5.2 that the POSIX.1 constant LI NK_MAX specifies the maximum value for a file's link
count.

e The other type of link is called a symbolic link. With a symbolic link, the actual contents of the
filethe data blocksstore the name of the file that the symbolic link points to. In the following
example, the filename in the directory entry is the three-character string | i b and the 7 bytes of
data in the file are usr/1i b:

[ rwxrwxrwx 1 root 7 Sep 25 07:14 lib -> usr/lib

The file type in the i-node would be S_| FLNK so that the system knows that this is a symbolic
link.

e The i-node contains all the information about the file: the file type, the file's access permission
bits, the size of the file, pointers to the file's data blocks, and so on. Most of the information in
the st at structure is obtained from the i-node. Only two items of interest are stored in the
directory entry: the filename and the i-node number; the other itemsthe length of the filename
and the length of the directory recordare not of interest to this discussion. The data type for the
i-node numberisino_t.

e Because the i-node number in the directory entry points to an i-node in the same file system,
we cannot have a directory entry point to an i-node in a different file system. This is why the
I n(1) command (make a new directory entry that points to an existing file) can't cross file



systems. We describe the | i nk function in the next section.

e When renaming a file without changing file systems, the actual contents of the file need not be
movedall that needs to be done is to add a new directory entry that points to the existing i-
node, and then unlink the old directory entry. The link count will remain the same. For example,
to rename the file /usr/1ib/foo to/usr/foo, the contents of the file f oo need not be moved if
the directories /usr/1ib and /usr are on the same file system. This is how the nmv(1) command

usually operates.
We've talked about the concept of a link count for a regular file, but what about the link count field
for a directory? Assume that we make a new directory in the working directory, as in

$ nkdir testdir

Figure 4.15 shows the result. Note that in this figure, we explicitly show the entries for dot and dot-
dot.

Figure 4.15. Sample cylinder group after creating the directory testdir
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The i-node whose number is 2549 has a type field of "directory” and a link count equal to 2. Any leaf
directory (a directory that does not contain any other directories) always has a link count of 2. The
value of 2 is from the directory entry that names the directory (t est di r) and from the entry for dot in
that directory. The i-node whose number is 1267 has a type field of "directory" and a link count that
is greater than or equal to 3. The reason we know that the link count is greater than or equal to 3 is



that minimally, it is pointed to from the directory entry that names it (which we don't show in Figure
4.15), from dot, and from dot-dot in the t est di r directory. Note that every subdirectory in a parent
directory causes the parent directory's link count to be increased by 1.

This format is similar to the classic format of the UNIX file system, which is described in detail in
Chapter 4 of Bach [1986]. Refer to Chapter 7 of McKusick et al. [1996] or Chapter 8 of McKusick and
Neville-Neil [2005] for additional information on the changes made with the Berkeley fast file system.
See Chapter 14 of Mauro and McDougall [2001] for details on UFS, the Solaris version of the Berkeley
fast file system.
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4.15.1ink, unl i nk, remove, and r enane Functions

As we saw in the previous section, any file can have multiple directory entries pointing to its i-node.
The way we create a link to an existing file is with the | i nk function.

View full width
#i ncl ude <uni std. h>

int link(const char *existingpath, const char
= newpath) ;

Returns: O if OK, 1 on error

This function creates a new directory entry, newpath, that references the existing file existingpath. If
the newpath already exists, an error is returned. Only the last component of the newpath is created.
The rest of the path must already exist.

The creation of the new directory entry and the increment of the link count must be an atomic
operation. (Recall the discussion of atomic operations in Section 3.11.)

Most implementations require that both pathnames be on the same file system, although POSIX.1
allows an implementation to support linking across file systems. If an implementation supports the
creation of hard links to directories, it is restricted to only the superuser. The reason is that doing this
can cause loops in the file system, which most utilities that process the file system aren't capable of
handling. (We show an example of a loop introduced by a symbolic link in Section 4.16.) Many file
system implementations disallow hard links to directories for this reason.

To remove an existing directory entry, we call the unl i nk function.

#i ncl ude <uni std. h>

i nt unlink(const char *pathname);

Returns: O if OK, 1 on error

This function removes the directory entry and decrements the link count of the file referenced by
pathname. If there are other links to the file, the data in the file is still accessible through the other
links. The file is not changed if an error occurs.



We've mentioned before that to unlink a file, we must have write permission and execute permission
in the directory containing the directory entry, as it is the directory entry that we will be removing.
Also, we mentioned in Section 4.10 that if the sticky bit is set in this directory we must have write
permission for the directory and one of the following:

e Own the file

e Own the directory

e Have superuser privileges
Only when the link count reaches 0 can the contents of the file be deleted. One other condition
prevents the contents of a file from being deleted: as long as some process has the file open, its
contents will not be deleted. When a file is closed, the kernel first checks the count of the number of

processes that have the file open. If this count has reached 0, the kernel then checks the link count;
if it is O, the file's contents are deleted.

Example

The program shown in Figure 4.16 opens a file and then unlinks it. The program then goes to sleep
for 15 seconds before terminating.

Running this program gives us

$1s -1 tenpfile look at how big thefileis

STWr----- 1 sar 413265408 Jan 21 07:14 tenpfile

$ df /hone check how much free space is available

Fi |l esystem 1K-Dbl ocks Used Available Use% Munted on

/ dev/ hda4 11021440 1956332 9065108 18% [/ hore

$ ./a.out & run the programin Figure 4.16 in the background
1364 the shell printsits process ID

$ file unlinked thefileis unlinked

s -1 tempfile seeif the filename is still there

Is: tenmpfile: No such file or directory the directory entry is gone
$ df /hone seeif the space is available yet

Fi |l esystem 1K-Dbl ocks Used Available Use% Munted on

/ dev/ hda4 11021440 1956332 9065108 18% [/ home

$ done the programis done, all open files are closed

df /hone now the disk space should be available

Fil esystem 1K-bl ocks Used Available Use% Munted on

/ dev/ hda4 11021440 1552352 9469088 15% [/ home
now the 394.1 MB of disk space are available

Figure 4.16. Open a file and then unlink it

#i ncl ude "apue. h"



#i ncl ude <fcntl. h>

i nt
mai n( voi d)
{
if (open("tenpfile", O RDWR) < 0)
err_sys("open error");
if (unlink("tenpfile") < 0)
err_sys("unlink error");
printf("file unlinked\n");
sl eep(15);
printf("done\n");
exit(0);
}

This property of unl i nk is often used by a program to ensure that a temporary file it creates won't be
left around in case the program crashes. The process creates a file using either open or creat and
then immediately calls unl i nk. The file is not deleted, however, because it is still open. Only when the
process either closes the file or terminates, which causes the kernel to close all its open files, is the
file deleted.

If pathname is a symbolic link, unl i nk removes the symbolic link, not the file referenced by the link.
There is no function to remove the file referenced by a symbolic link given the name of the link.

The superuser can call unl i nk with pathname specifying a directory, but the function r mdi r should be
used instead to unlink a directory. We describe the r ndi r function in Section 4.20.

We can also unlink a file or a directory with the r enove function. For a file, r enpve is identical to
unl i nk. For a directory, renove is identical to rndir.

#i ncl ude <stdi o. h>

i nt renove(const char *pathname);

Returns: O if OK, 1 on error

ISO C specifies the renove function to delete a file. The name was changed from the historical
UNIX name of unl i nk because most non-UNIX systems that implement the C standard didn't
support the concept of links to a file at the time.

A file or a directory is renamed with the r enane function.



#i ncl ude <stdi o. h>

i nt

renane(const char *oldname, const char *newname);

Returns: O if OK, 1 on error

This function is defined by 1SO C for files. (The C standard doesn't deal with directories.)
POSIX.1 expanded the definition to include directories and symbolic links.

There are several conditions to describe, depending on whether oldname refers to a file, a directory,
or a symbolic link. We must also describe what happens if newname already exists.

1.

If oldname specifies a file that is not a directory, then we are renaming a file or a symbolic link.
In this case, if newname exists, it cannot refer to a directory. If newname exists and is not a
directory, it is removed, and oldname is renamed to newname. We must have write permission
for the directory containing oldname and for the directory containing newname, since we are
changing both directories.

If oldname specifies a directory, then we are renaming a directory. If newname exists, it must
refer to a directory, and that directory must be empty. (When we say that a directory is empty,
we mean that the only entries in the directory are dot and dot-dot.) If newname exists and is an
empty directory, it is removed, and oldname is renamed to newname. Additionally, when we're
renaming a directory, newname cannot contain a path prefix that names oldname. For example,
we can't rename /usr/foo to /usr/fool/testdir, since the old name (/usr/foo) is a path prefix
of the new name and cannot be removed.

If either oldname or newname refers to a symbolic link, then the link itself is processed, not the
file to which it resolves.

As a special case, if the oldname and newname refer to the same file, the function returns
successfully without changing anything.

If newname already exists, we need permissions as if we were deleting it. Also, because we're
removing the directory entry for oldname and possibly creating a directory entry for newname, we
need write permission and execute permission in the directory containing oldname and in the
directory containing newname.
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4.16. Symbolic Links

A symbolic link is an indirect pointer to a file, unlike the hard links from the previous section, which
pointed directly to the i-node of the file. Symbolic links were introduced to get around the limitations
of hard links.

e Hard links normally require that the link and the file reside in the same file system
e Only the superuser can create a hard link to a directory

There are no file system limitations on a symbolic link and what it points to, and anyone can create a
symbolic link to a directory. Symbolic links are typically used to move a file or an entire directory
hierarchy to another location on a system.

Symbolic links were introduced with 4.2BSD and subsequently supported by SVR4.

When using functions that refer to a file by name, we always need to know whether the function
follows a symbolic link. If the function follows a symbolic link, a pathname argument to the function
refers to the file pointed to by the symbolic link. Otherwise, a pathname argument refers to the link
itself, not the file pointed to by the link. Figure 4.17 summarizes whether the functions described in
this chapter follow a symbolic link. The functions nkdi r, nkfi f o, mknod, and r ndi r are not in this
figure, as they return an error when the pathname is a symbolic link. Also, the functions that take a
file descriptor argument, such as f st at and f chnod, are not listed, as the handling of a symbolic link
is done by the function that returns the file descriptor (usually open). Whether or not chown follows a
symbolic link depends on the implementation.

In older versions of Linux (those before version 2.1.81), chown didn't follow symbolic links. From
version 2.1.81 onward, chown follows symbolic links. With FreeBSD 5.2.1 and Mac OS X 10.3,
chown follows symbolic links. (Prior to 4.4BSD, chown didn't follow symbolic links, but this was
changed in 4.4BSD.) In Solaris 9, chown also follows symbolic links. All of these platforms
provide implementations of | chown to change the ownership of symbolic links themselves.

One exception to Figure 4.17 is when the open function is called with both O CREAT and O_EXCL set. In
this case, if the pathname refers to a symbolic link, open will fail with errno set to EEXI ST. This
behavior is intended to close a security hole so that privileged processes can't be fooled into writing
to the wrong files.

Figure 4.17. Treatment of symbolic links by
various functions



Does not follow
Function symbolic link Follows symbolic link
access -
chdir .
chnod .
chown - -
creat -
exec .
| chown -
I'i nk -
| stat °
open -
opendi r -
pat hconf -
readl i nk e
renove -
renane -
st at o
truncate -
unl i nk e
Example

It is possible to introduce loops into the file system by using symbolic links. Most functions that look
up a pathname return an errno of ELOOP when this occurs. Consider the following commands:

$ nkdir foo make a new directory

$ touch foo/a create a O-length file

$In-s ../foo foo/testdir createasymboliclink
$1s -1 foo

total O

STWr----- 1 sar 0 Jan 22 00:16 a



| rwxrwxrwx 1 sar 6 Jan 22 00:16 testdir -> ../foo

This creates a directory f oo that contains the file a and a symbolic link that points to f oo. We show
this arrangement in Figure 4.18, drawing a directory as a circle and a file as a square. If we write a
simple program that uses the standard function ft w(3) on Solaris to descend through a file hierarchy,
printing each pathname encountered, the output is

f oo

foola

foo/testdir

foo/testdir/a
foo/testdir/testdir
foo/testdir/testdir/a
foo/testdir/testdir/testdir
foo/testdir/testdir/testdir/a

(many more lines until we encounter an ELOOP error)

In Section 4.21, we provide our own version of the ftw function that uses | st at instead of stat, to
prevent it from following symbolic links.

Note that on Linux, the ftw function uses | st at, so it doesn’'t display this behavior.

A loop of this form is easy to remove. We are able to unl i nk the file f oo/ testdir, as unl i nk does not
follow a symbolic link. But if we create a hard link that forms a loop of this type, its removal is much
more difficult. This is why the | i nk function will not form a hard link to a directory unless the process
has superuser privileges.

Indeed, Rich Stevens did this on his own system as an experiment while writing the original
version of this section. The file system got corrupted and the normal f sck (1) utility couldn't fix
things. The deprecated tools cl ri (8) and dcheck(8) were needed to repair the file system.

The need for hard links to directories has long since passed. With symbolic links and the nkdi r
function, there is no longer any need for users to create hard links to directories.

When we open a file, if the pathname passed to open specifies a symbolic link, open follows the link to
the specified file. If the file pointed to by the symbolic link doesn't exist, open returns an error saying
that it can't open the file. This can confuse users who aren't familiar with symbolic links. For example,

$1In -s /no/such/file nyfile create a symbolic link
$1s nyfile

nyfile | s saysit'sthere
$ cat nyfile sowetry to look at it

cat: nyfile: No such file or directory

$1Is -1 nyfile try -1 option

[ rwxrwxrwx 1 sar 13 Jan 22 00:26 nyfile -> /no/such/file



The file nyfil e does exist, yet cat says there is no such file, because nyfil e is a symbolic link and
the file pointed to by the symbolic link doesn't exist. The -1 option to | s gives us two hints: the first
character is an |, which means a symbolic link, and the sequence - > also indicates a symbolic link.
The | s command has another option (- F) that appends an at-sign to filenames that are symbolic
links, which can help spot symbolic links in a directory listing without the -1 option.

Figure 4.18. Symbolic link test di r that creates a loop
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4.17. sym i nk and r eadl i nk Functions

A symbolic link is created with the syni i nk function.

View full width
#i ncl ude <uni std. h>

int symink(const char *actualpath, const char
= sympath) ;

Returns: O if OK, 1 on error

A new directory entry, sympath, is created that points to actualpath. It is not required that
actualpath exist when the symbolic link is created. (We saw this in the example at the end of the
previous section.) Also, actualpath and sympath need not reside in the same file system.

Because the open function follows a symbolic link, we need a way to open the link itself and read the
name in the link. The r eadl i nk function does this.

View full width
#i ncl ude <uni std. h>

ssize_t readlink(const char* restrict pathname
=thar *restrict buf,

size_t bufsize) ;

Returns: number of bytes read if OK, 1 on error

This function combines the actions of open, read, and cl ose. If the function is successful, it returns

the number of bytes placed into buf. The contents of the symbolic link that are returned in buf are
not null terminated.
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4.18. File Times

Three time fields are maintained for each file. Their purpose is summarized in Figure 4.19.

Figure 4.19. The three time values associated with

each file
Field Description Example | s(1) option
st _atine | last-access time of file data read -u
st_ntinme | last-modification time of file wite default
data
st _ctine | last-change time of i-node chnmod, chown -C
status

Note the difference between the modification time (st _nti ne) and the changed-status time

(st _ctine). The modification time is when the contents of the file were last modified. The changed-
status time is when the i-node of the file was last modified. In this chapter, we've described many
operations that affect the i-node without changing the actual contents of the file: changing the file
access permissions, changing the user ID, changing the number of links, and so on. Because all the
information in the i-node is stored separately from the actual contents of the file, we need the
changed-status time, in addition to the modification time.

Note that the system does not maintain the last-access time for an i-node. This is why the functions
access and st at , for example, don't change any of the three times.

The access time is often used by system administrators to delete files that have not been accessed
for a certain amount of time. The classic example is the removal of files named a. out or core that
haven't been accessed in the past week. The fi nd(1) command is often used for this type of
operation.

The modification time and the changed-status time can be used to archive only those files that have
had their contents modified or their i-node modified.

The | s command displays or sorts only on one of the three time values. By default, when invoked
with either the -1 or the -t option, it uses the modification time of a file. The - u option causes it to
use the access time, and the - c option causes it to use the changed-status time.

Figure 4.20 summarizes the effects of the various functions that we've described on these three
times. Recall from Section 4.14 that a directory is simply a file containing directory entries: filenames
and associated i-node numbers. Adding, deleting, or modifying these directory entries can affect the
three times associated with that directory. This is why Figure 4.20 contains one column for the three



times associated with the file or directory and another column for the three times associated with the
parent directory of the referenced file or directory. For example, creating a new file affects the
directory that contains the new file, and it affects the i-node for the new file. Reading or writing a file,
however, affects only the i-node of the file and has no effect on the directory. (The nkdi r and r ndi r
functions are covered in Section 4.20. The uti ne function is covered in the next section. The six exec
functions are described in Section 8.10. We describe the nkfi f o and pi pe functions in Chapter 15.)

Figure 4.20. Effect of various functions on the access, modification, and
changed-status times

Parent
directory of
Function Refer(?nced file refere_nced file Section Note
or directory or directory
a m c a m c
chnod, f chnod . 4.9
chown, f chown - 4.11
creat - . o e - 3.4 O_CREAT new file
creat . . 3.4 O_TRUNC existing file
exec - 8.10
| chown - 4.11
I'i nk o . - 4.15 parent of second argument
nkdi r e . o - - 4.20
nkfifo o - - - - 15.5
open - - - - - 3.3 O_CREAT new file
open . . 3.3 O_TRUNC existing file
pi pe - . - 15.2
read - 3.7
renove - o . 4.15 remove file = unl i nk
renove - - 4.15 remove directory = rndi r
rename - - - 4.15 | for both arguments
rdir - - 4.20




Referenced file

Parent

directory of

referenced file

Function or directory or directory Section Note
a m c a m C
truncate, ftruncate - . 4.13
unl i nk o o - 4.15
utinme . - - 4.19
wite . - 3.8
=1=1
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4.19. uti re Function

The access time and the modification time of a file can be changed with the uti ne function.

View full width
#i ncl ude <utine. h>

int utine(const char *pathname, const struct
=.tinbuf *times);

Returns: O if OK, 1 on error

The structure used by this function is

struct utinmbuf {
tinme_t actine; /* access tine */
time_t nodtime; /* modification time */

}

The two time values in the structure are calendar times, which count seconds since the Epoch, as
described in Section 1.10.

The operation of this function, and the privileges required to execute it, depend on whether the times
argument is NULL.

e If times is a null pointer, the access time and the modification time are both set to the current
time. To do this, either the effective user ID of the process must equal the owner ID of the file,
or the process must have write permission for the file.

e If times is a non-null pointer, the access time and the modification time are set to the values in
the structure pointed to by times. For this case, the effective user ID of the process must equal
the owner ID of the file, or the process must be a superuser process. Merely having write
permission for the file is not adequate.

Note that we are unable to specify a value for the changed-status time, st _cti nethe time the i-node
was last changedas this field is automatically updated when the uti me function is called.

On some versions of the UNIX System, the t ouch(1) command uses this function. Also, the standard
archive programs, tar (1) and cpi o(1), optionally call uti e to set the times for a file to the time



values saved when the file was archived.

Example

The program shown in Figure 4.21 truncates files to zero length using the O TRUNC option of the open
function, but does not change their access time or modification time. To do this, the program first
obtains the times with the st at function, truncates the file, and then resets the times with the uti me

function.

We can demonstrate the program in Figure 4.21 with the following script:

$ I's -1 changenod tines
-rwWXrwxr-x 1 sar 15019
-rwWXrwxr-x 1 sar 16172

$ Is -lu changenod tines
-rwWxrwxr-x 1 sar 15019
-rwWXrwxr-x 1 sar 16172
$ date

look at sizes and last-modification times

Nov 18 18:53 changenod
Nov 19 20:05 tines

look at last-access times
Nov 18 18:53 changenod
Nov 19 20:05 tines

print today's date

Thu Jan 22 06:55:17 EST 2004

$ ./a.out changenod tines

$ Is -1 changenod tines
-rWXrwxr-x 1 sar 0
-rWXrwWxr-x 1 sar 0
$ I's -l1u changenod tinmes
-rWXrwxr-x 1 sar 0
-rWXrwxr-x 1 sar 0
$ Is -lc changenod tines
-rWXrwxr-x 1 sar 0
-rWXrwWxr-x 1 sar 0

run the programin Figure 4.21
and check the results

Nov 18 18:53 changenod
Nov 19 20:05 tines
check the last-access tinmes also
Nov 18 18:53 changenod
Nov 19 20:05 tines
and the changed-status tines
Jan 22 06:55 changenod
Jan 22 06:55 tines

As we expect, the last-modification times and the last-access times are not changed. The changed-
status times, however, are changed to the time that the program was run.

Figure 4.21. Example of uti me function

#1 ncl ude "apue. h"
#i ncl ude <fcntl. h>
#i ncl ude <utine. h>

i nt
mai n(int argc, char *argv[])
{
i nt i, fd;
struct stat st at buf;

struct utinbuf tinmebuf;



for (i =

}
if(

}

cl os
tinme
tinme

if (utime(argv[i],

}
}
exit(0);

1; i < argc;
if (stat(argv[i],

i++) {

&tatbuf) < 0) { /* fetch current tines */

err_ret("%: stat error", argv[i]);
conti nue;

(fd = open(argv[i], O RDWR
err_ret("%: open error", argv[i]);
conti nue;

e(fd);

buf . acti ne
buf . nodti me

err_ret("%:
conti nue;

stat buf.st_atine;
stat buf.st_ntine;

utine error",

& imebuf) < 0) {

argv[il]);

/* reset tines */

OTRUNC)) < 0) { /* truncate */
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4.20. nkdi r and rndi r Functions

Directories are created with the nkdi r function and deleted with the r ndi r function.

#i ncl ude <sys/stat.h>

i nt nkdir(const char *pathname, node_t mode);

Returns: O if OK, 1 on error

This function creates a new, empty directory. The entries for dot and dot-dot are automatically
created. The specified file access permissions, mode, are modified by the file mode creation mask of
the process.

A common mistake is to specify the same mode as for a file: read and write permissions only. But for
a directory, we normally want at least one of the execute bits enabled, to allow access to filenames
within the directory. (See Exercise 4.16.)

The user ID and group ID of the new directory are established according to the rules we described in
Section 4.6.

Solaris 9 and Linux 2.4.22 also have the new directory inherit the set-group-ID bit from the
parent directory. This is so that files created in the new directory will inherit the group ID of that
directory. With Linux, the file system implementation determines whether this is supported. For
example, the ext 2 and ext 3 file systems allow this behavior to be controlled by an option to the
nount (1) command. With the Linux implementation of the UFS file system, however, the
behavior is not selectable; it inherits the set-group-1D bit to mimic the historical BSD
implementation, where the group ID of a directory is inherited from the parent directory.

BSD-based implementations don't propagate the set-group-ID bit; they simply inherit the group
ID as a matter of policy. Because FreeBSD 5.2.1 and Mac OS X 10.3 are based on 4.4BSD, they
do not require this inheriting of the set-group-ID bit. On these platforms, newly created files
and directories always inherit the group ID of the parent directory, regardless of the set-group-
ID bit.

Earlier versions of the UNIX System did not have the nkdi r function. It was introduced with
4.2BSD and SVR3. In the earlier versions, a process had to call the nknod function to create a
new directory. But use of the nknod function was restricted to superuser processes. To
circumvent this, the normal command that created a directory, nkdi r (1), had to be owned by
root with the set-user-ID bit on. To create a directory from a process, the nkdi r (1) command
had to be invoked with the syst em(3) function.

An empty directory is deleted with the rndi r function. Recall that an empty directory is one that



contains entries only for dot and dot-dot.

#i ncl ude <uni std. h>

int rndir(const char *pathname);

Returns: O if OK, 1 on error

If the link count of the directory becomes 0 with this call, and if no other process has the directory
open, then the space occupied by the directory is freed. If one or more processes have the directory
open when the link count reaches 0, the last link is removed and the dot and dot-dot entries are
removed before this function returns. Additionally, no new files can be created in the directory. The
directory is not freed, however, until the last process closes it. (Even though some other process has
the directory open, it can't be doing much in the directory, as the directory had to be empty for the

rmdi r function to succeed.)
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4.21. Reading Directories

Directories can be read by anyone who has access permission to read the directory. But only the
kernel can write to a directory, to preserve file system sanity. Recall from Section 4.5 that the write
permission bits and execute permission bits for a directory determine if we can create new files in the
directory and remove files from the directorythey don't specify if we can write to the directory itself.

The actual format of a directory depends on the UNIX System implementation and the design of the
file system. Earlier systems, such as Version 7, had a simple structure: each directory entry was 16
bytes, with 14 bytes for the filename and 2 bytes for the i-node number. When longer filenames were
added to 4.2BSD, each entry became variable length, which means that any program that reads a
directory is now system dependent. To simplify this, a set of directory routines were developed and
are part of POSIX.1. Many implementations prevent applications from using the r ead function to
access the contents of directories, thereby further isolating applications from the implementation-
specific details of directory formats.

#i ncl ude <dirent. h>

DI R *opendi r (const char *pathname) ;

Returns: pointer if OK, NULL on error

struct dirent *readdir(D R *dp);

Returns: pointer if OK, NULL at end of directory or error

void rewi nddir(DIR *dp);

int closedir(D R *dp);

Returns: O if OK, 1 on error

long telldir(DR *dp);

Returns: current location in directory associated with dp




voi d seekdir(D R *dp, |ong loc);

The tel I dir and seekdi r functions are not part of the base POSIX.1 standard. They are XSI
extensions in the Single UNIX Specifications, so all conforming UNIX System implementations are
expected to provide them.

Recall our use of several of these functions in the program shown in Figure 1.3, our bare-bones
implementation of the | s command.

The di rent structure defined in the file <di rent . h> is implementation dependent. Implementations
define the structure to contain at least the following two members:

struct dirent {
ino_t d_ino; /* i-node nunber */
char d_name[ NAME_VAX + 1]; /[* null-termnated fil enane */

The d_i no enTRy is not defined by POSIX.1, since it's an implementation feature, but it is
defined in the XSI extension to POSIX.1. POSIX.1 defines only the d_nane entry in this structure.

Note that NAME_MAX is not a defined constant with Solarisits value depends on the file system in which
the directory resides, and its value is usually obtained from the f pat hconf function. A common value
for NAMVE_MAX is 255. (Recall Figure 2.14.) Since the filename is null terminated, however, it doesn't
matter how the array d_nane is defined in the header, because the array size doesn't indicate the
length of the filename.

The DI R structure is an internal structure used by these six functions to maintain information about
the directory being read. The purpose of the DI R structure is similar to that of the FI LE structure
maintained by the standard 1/0 library, which we describe in Chapter 5.

The pointer to a DI R structure that is returned by opendi r is then used with the other five functions.
The opendi r function initializes things so that the first r eaddi r reads the first entry in the directory.
The ordering of entries within the directory is implementation dependent and is usually not
alphabetical.

Example

We'll use these directory routines to write a program that traverses a file hierarchy. The goal is to
produce the count of the various types of files that we show in Figure 4.4. The program shown in
Figure 4.22 takes a single argumentthe starting pathnameand recursively descends the hierarchy
from that point. Solaris provides a function, ft w(3), that performs the actual traversal of the
hierarchy, calling a user-defined function for each file. The problem with this function is that it calls
the st at function for each file, which causes the program to follow symbolic links. For example, if we



start at the root and have a symbolic link named /1 i b that points to /usr/ i b, all the files in the
directory /usr/1ib are counted twice. To correct this, Solaris provides an additional function, nf t w(3),
with an option that stops it from following symbolic links. Although we could use nf t w, we'll write our
own simple file walker to show the use of the directory routines.

In the Single UNIX Specification, both ftw and nftw are included in the XSI extensions to the
base POSIX.1 specification. Implementations are included in Solaris 9 and Linux 2.4.22. BSD-
based systems have a different function, ft s(3), that provides similar functionality. It is
available in FreeBSD 5.2.1, Mac OS X 10.3, and Linux 2.4.22.

We have provided more generality in this program than needed. This was done to illustrate the ftw
function. For example, the function nyf unc always returns O, even though the function that calls it is
prepared to handle a nonzero return.

Figure 4.22. Recursively descend a directory hierarchy, counting file
types

#i ncl ude "apue. h"
#i ncl ude <dirent. h>
#include <limts. h>

/* function type that is called for each filename */
typedef int Myfunc(const char *, const struct stat *, int);

static Myfunc myf unc;
static int myftw(char *, Myfunc *);
static int dopat h( Myf unc *);

static long nreg, ndir, nblk, nchr, nfifo, nslink, nsock, ntot;

i nt
mai n(int argc, char *argv[])
{

i nt ret;

if (argc !'= 2)
err_quit("usage: ftw <starting-pathname>");

ret = nyftw(argv[1], nyfunc); /* does it all */

ntot = nreg + ndir + nblk + nchr + nfifo + nslink + nsock;
if (ntot == 0)
ntot = 1; /* avoid divide by 0O; print O for all counts */
printf("regular files = %ld, %.2f % n", nreg,
nreg*100. 0/ ntot);

printf("directories = %ld, 9%.2f ®An", ndir,
ndi r*100. 0/ ntot ) ;
printf("block special = %ld, %.2f % n", nblk,

nbl k*100. 0/ ntot) ;
printf("char special

%wld, 9%.2f 9%®4An", nchr,



nchr*100. 0/ ntot);
printf("FIFGs
nfifo*100.0/ ntot);
printf("synbolic |inks
nsli nk*100. 0/ ntot);
printf("sockets
nsock*100. 0/ ntot);

ol d, 9%.2f %®An", nfifo,

%/l d, 9%b.2f %®ANn", nslink,

ol d, 9%.2f %®ANn", nsock,

exit(ret);

}

/*
* Descend through the hierarchy, starting at "pathname".
* The caller's func() is called for every file.

*/
#define FTWF 1 [* file other than directory */
#define FTWD 2 /* directory */
#define FTWDNR 3 /* directory that can't be read */
#define FTWNS 4 /[* file that we can't stat */
static char *full path; /* contains full pathname for every file */
static int /* we return whatever func() returns */
myftw(char *pathnane, Mfunc *func)
{
int len;
full path = path_all oc(& en); /* malloc's for PATH MAX+1 bytes */
/* (FEigure 2.15) */
strncpy(full path, pathnane, |en); /* protect against */
full path[len-1] = 0; [* buffer overrun */
return(dopat h(func));
}
/*
* Descend through the hierarchy, starting at "fullpath".
*

If "fullpath" is anything other than a directory, we Istat() it,
* call func(), and return. For a directory, we call ourself
* recursively for each name in the directory.

*/
static int /* we return whatever func() returns */
dopat h( Myf unc* func)
{
struct stat st at buf ;
struct dirent *dirp;
D R *dp;
i nt ret;
char *ptr;

if (Istat(fullpath, &statbuf) < 0) /* stat error */
return(func(full path, &statbuf, FTWNS));
if (S ISDIR(statbuf.st node) == 0) /* not a directory */



return(func(full path, &statbuf, FTWF));

/*
* It's a directory. First call func() for the directory,
* then process each filenane in the directory.
*/
if ((ret = func(fullpath, &statbuf, FTWD)) != 0)
return(ret);

ptr = fullpath + strlen(full path); /* point to end of fullpath */
*ptr++ ="/

*ptr = 0;

if ((dp = opendir(fullpath)) == NULL) /* can't read directory */

return(func(full path, &statbuf, FTWDNR));

while ((dirp = readdir(dp)) !'= NULL) {

if (strcnp(dirp->d_nane, ".") == 0 ||
strenp(dirp->d_name, "..") == 0)
conti nue; /* ignore dot and dot-dot */
strcpy(ptr, dirp->d_nane); /* append nane after slash */
if ((ret = dopath(func)) != 0) /* recursive */
break; /* time to | eave */
}
ptr[-1] = 0; /* erase everything from slash onwards */

if (closedir(dp) < 0)
err_ret("can't close directory %", fullpath);

return(ret);

}

static int
nyfunc(const char *pathnanme, const struct stat *statptr, int type)

{
switch (type) {

case FTWF:
switch (statptr->st _node & S | FMI) {
case S_| FREG nreg++; br eak;
case S | FBLK: nbl k++; br eak;
case S | FCHR: nchr ++; br eak;
case S | FIFC nfifo++; br eak;
case S | FLNK: nslink++; break;

case S | FSOCK: nsock++; br eak;
case S |FD R
err_dunp("for S IFD R for %", pathnane);
/* directories should have type = FTWD */
}

br eak;



case FTWD:
ndi r ++;
br eak;

case FTWDNR:
err_ret("can't read directory %", pathnane);

br eak;
case FTW.NS:
err_ret("stat error for %", pathnane);
br eak;
defaul t:
err_dunp("unknown type % for pathname %", type, pathnane);
}
return(0);

For additional information on descending through a file system and the use of this technique in many
standard UNIX System commandsfind, | s, t ar, and so onrefer to Fowler, Korn, and Vo [1989].
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4.22. chdir, fchdir, and get cwd Functions

Every process has a current working directory. This directory is where the search for all relative
pathnames starts (all pathnames that do not begin with a slash). When a user logs in to a UNIX
system, the current working directory normally starts at the directory specified by the sixth field in
the / et c/ passwd filethe user's home directory. The current working directory is an attribute of a
process; the home directory is an attribute of a login name.

We can change the current working directory of the calling process by calling the chdir or fchdir
functions.

#i ncl ude <unistd. h>
int chdir(const char *pathname);

int fchdir(int filedes);

Both return: O if OK, 1 on error

We can specify the new current working directory either as a pathname or through an open file
descriptor.

The f chdi r function is not part of the base POSIX.1 specification. It is an XSI extension in the
Single UNIX Specification. All four platforms discussed in this book support f chdir.

Example

Because it is an attribute of a process, the current working directory cannot affect processes that
invoke the process that executes the chdir. (We describe the relationship between processes in more
detail in Chapter 8.) This means that the program in Figure 4.23 doesn't do what we might expect.

If we compile it and call the executable nycd, we get the following:

$ pwd

lusr/lib

$ nycd

chdir to /tnp succeeded
$ pwd

lusr/lib



The current working directory for the shell that executed the nycd program didn't change. This is a
side effect of the way that the shell executes programs. Each program is run in a separate process,
so the current working directory of the shell is unaffected by the call to chdi r in the program. For this
reason, the chdi r function has to be called directly from the shell, so the cd command is built into the
shells.

Figure 4.23. Example of chdir function

#i ncl ude "apue. h"

i nt

mai n(voi d)

{
if (chdir("/tnp") < 0)

err_sys("chdir failed");

printf("chdir to /tnp succeeded\n");
exit(0);

}

Because the kernel must maintain knowledge of the current working directory, we should be able to
fetch its current value. Unfortunately, the kernel doesn’'t maintain the full pathname of the directory.
Instead, the kernel keeps information about the directory, such as a pointer to the directory's v-
node.

What we need is a function that starts at the current working directory (dot) and works its way up
the directory hierarchy, using dot-dot to move up one level. At each directory, the function reads the
directory entries until it finds the name that corresponds to the i-node of the directory that it just
came from. Repeating this procedure until the root is encountered yields the entire absolute
pathname of the current working directory. Fortunately, a function is already provided for us that
does this task.

#i ncl ude <uni std. h>

char *getcwd(char *buf, size_t size);

Returns: buf if OK, NULL on error

We must pass to this function the address of a buffer, buf, and its size (in bytes). The buffer must be
large enough to accommodate the absolute pathname plus a terminating null byte, or an error is



returned. (Recall the discussion of allocating space for a maximum-sized pathname in Section 2.5.5.)
Some older implementations of get cwd allow the first argument buf to be NULL. In this case, the

function calls mal | oc to allocate size number of bytes dynamically. This is not part of POSIX.1 or
the Single UNIX Specification and should be avoided.

Example

The program in Figure 4.24 changes to a specific directory and then calls get cwd to print the working
directory. If we run the program, we get

$ ./a.out
cwd = /var/spool /uucppublic
$ Is -1 /usr/spool

I rwxrwxrwx 1 root 12 Jan 31 07:57 /usr/spool -> ../var/spool

Note that chdi r follows the symbolic linkas we expect it to, from Figure 4.17but when it goes up the
directory tree, get cwd has no idea when it hits the / var/ spool directory that it is pointed to by the
symbolic link / usr/ spool . This is a characteristic of symbolic links.

Figure 4.24. Example of get cwd function

#i ncl ude "apue. h"

i nt
mai n(voi d)
{
char *ptr;
i nt si ze;
if (chdir("/usr/spool/uucppublic") < 0)
err_sys("chdir failed");
ptr = path_alloc(&size); /* our own function */
if (getcwd(ptr, size) == NULL)
err_sys("getcwd failed");
printf("cwd = %\n", ptr);
exit(0);
}

The get cwd function is useful when we have an application that needs to return to the location in the



file system where it started out. We can save the starting location by calling get cwd before we change
our working directory. After we complete our processing, we can pass the pathname obtained from
get cwd to chdi r to return to our starting location in the file system.

The f chdi r function provides us with an easy way to accomplish this task. Instead of calling get cwd,
we can open the current directory and save the file descriptor before we change to a different location
in the file system. When we want to return to where we started, we can simply pass the file
descriptor to fchdir.
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4.23. Device Special Files

The two fields st _dev and st _rdev are often confused. We'll need to use these fields in Section 18.9
when we write the tt ynane function. The rules are simple.

e Every file system is known by its major and minor device numbers, which are encoded in the
primitive system data type dev_t . The major number identifies the device driver and sometimes
encodes which peripheral board to communicate with; the minor number identifies the specific
subdevice. Recall from Figure 4.13 that a disk drive often contains several file systems. Each file
system on the same disk drive would usually have the same major number, but a different
minor number.

e We can usually access the major and minor device numbers through two macros defined by
most implementations: maj or and mi nor . This means that we don't care how the two numbers
are stored in a dev_t object.

Early systems stored the device number in a 16-bit integer, with 8 bits for the major
number and 8 bits for the minor number. FreeBSD 5.2.1 and Mac OS X 10.3 use a 32-bit
integer, with 8 bits for the major number and 24 bits for the minor number. On 32-bit
systems, Solaris 9 uses a 32-bit integer for dev_t , with 14 bits designated as the major
number and 18 bits designated as the minor number. On 64-bit systems, Solaris 9
represents dev_t as a 64-bit integer, with 32 bits for each number. On Linux 2.4.22,
although dev_t is a 64-bit integer, currently the major and minor numbers are each only 8
bits.

POSIX.1 states that the dev_t type exists, but doesn't define what it contains or how to
get at its contents. The macros maj or and ni nor are defined by most implementations.
Which header they are defined in depends on the system. They can be found in
<sys/types. h> on BSD-based systems. Solaris defines them in <sys/ nkdev. h>. Linux
defines these macros in <sys/ sysmacr os. h>, which is included by <sys/t ypes. h>.

e The st_dev value for every filename on a system is the device number of the file system
containing that filename and its corresponding i-node.

e Only character special files and block special files have an st _rdev value. This value contains the
device number for the actual device.

Example

The program in Figure 4.25 prints the device number for each command-line argument. Additionally,
if the argument refers to a character special file or a block special file, the st _rdev value for the
special file is also printed.

Running this program gives us the following output:



$ ./a.out / /hone/sar /dev/tty[01]
/. dev = 3/3
/[ hone/ sar: dev
/dev/tty0: dev 0/7 (character) rdev = 4/0
/dev/ttyl: dev 0/7 (character) rdev = 4/1

$ nount which directories are mounted on which devices?
/dev/ hda3 on / type ext2 (rw, noatine)

/ dev/ hda4 on /honme type ext2 (rw, noatine)

$1s -IL /dev/tty[01l] /dev/hda[ 34]

3/4

brw------ 1 root 3, 3 Dec 31 1969 /dev/hda3
brw ------ 1 root 3, 4 Dec 31 1969 /dev/hda4
Cr'wW------ 1 root 4, 0 Dec 31 1969 /dev/ttyO0
Crw------ 1 root 4, 1 Jan 18 15:36 /dev/ttyl

The first two arguments to the program are directories (/ and / hone/ sar ), and the next two are the
device names / dev/tty[ 01] . (We use the shell's regular expression language to shorten the amount
of typing we need to do. The shell will expand the string / dev/tty[ 01] to/dev/tty0 /dev/ttyl.)

We expect the devices to be character special files. The output from the program shows that the root
directory has a different device number than does the / hone/ sar directory. This indicates that they
are on different file systems. Running the nount (1) command verifies this.

We then use | s to look at the two disk devices reported by nount and the two terminal devices. The
two disk devices are block special files, and the two terminal devices are character special files.
(Normally, the only types of devices that are block special files are those that can contain random-
access file systems: disk drives, floppy disk drives, and CD-ROMs, for example. Some older versions
of the UNIX System supported magnetic tapes for file systems, but this was never widely used.)

Note that the filenames and i-nodes for the two terminal devices (st _dev) are on device 0/7the devfs
pseudo file system, which implements the / devbut that their actual device numbers are 4/0 and 4/1.

Figure 4.25. Print st _dev and st _rdev values

#i ncl ude "apue. h"

#i fdef SOLARI S

#i ncl ude <sys/ nkdev. h>
#endi f

i nt
mai n(int argc, char *argv[])

{
i nt i
struct stat buf;
for (i =1; i < argc; i++) {

printf("%: ", argv[i]);
if (stat(argv[i], &buf) < 0) {



err _ret("stat error");
conti nue;

}

printf("dev = %l/ %", major(buf.

st _dev), minor(buf.st_dev));

if (S_ISCHR(buf.st_node) || S_ISBLK(buf.st_node)) {

printf(" (%) rdev = %/ %",

(S_I SCHR(buf.st _nmode)) ? "character" : "block",

maj or (buf. st _rdev),

}
printf("\n");

}

exit(0);

m nor (buf. st _rdev));
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4.24. Summary of File Access Permission Bits

We've covered all the file access permission bits, some of which serve multiple purposes. Figure 4.26
summarizes all these permission bits and their interpretation when applied to a regular file and a

directory.
Figure 4.26. Summary of file access permission bits
Constant Description Effect on regular file Effect on directory
S ISUD set-user-I1D set effective user ID on (not used)
execution
S I1SE@D set-group-1D if group-execute set then set set group ID of new files
effective group ID on created in directory to group 1D
execution; otherwise enable of directory
mandatory record locking (if
supported)
S_I SVTX sticky bit control caching of file contents restrict removal and renaming
(if supported) of files in directory
S | RUSR user-read user permission to read file user permission to read
directory entries
S_I WUSR user-write user permission to write file user permission to remove and
create files in directory
S_| XUSR user-execute user permission to execute file | user permission to search for
given pathname in directory
S_| RGRP group-read group permission to read file group permission to read
directory entries
S | WGRP group-write group permission to write file group permission to remove
and create files in directory
S | XGRP group-execute | group permission to execute file | group permission to search for
given pathname in directory
S_| ROTH other-read other permission to read file other permission to read
directory entries
S | WOTH other-write other permission to write file other permission to remove and
create files in directory




Constant Description Effect on regular file Effect on directory

S_| XOrH other-execute other permission to execute file | other permission to search for
given pathname in directory

The final nine constants can also be grouped into threes, since

SIRWU = SIRUSR | S IWSR | S_IXUSR
S IRMKG = S IRGRP | SIWERP | S | XGRP
SIRWKO = S IROTH | S IWOTH | S_I XOTH
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4.25. Summary

This chapter has centered around the st at function. We've gone through each member in the st at
structure in detail. This in turn led us to examine all the attributes of UNIX files. A thorough

understanding of all the properties of a file and all the functions that operate on files is essential to
UNIX programming.
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Exercises

4.1 Modify the program in Figure 4.3 to use st at instead of | st at . What changes if one of
the command-line arguments is a symbolic link?

4.2 What happens if the file mode creation mask is set to 777 (octal)? Verify the results
using your shell's umask command.

4.3 Verify that turning off user-read permission for a file that you own denies your access to

the file.
4.4 Run the program in Figure 4.9 after creating the files f oo and bar . What happens?
4.5 In Section 4.12, we said that a file size of 0 is valid for a regular file. We also said that

the st _si ze field is defined for directories and symbolic links. Should we ever see a file
size of O for a directory or a symbolic link?

4.6 Write a utility like cp(1) that copies a file containing holes, without writing the bytes of O
to the output file.

4.7 Note in output from the | s command in Section 4.12 that the files core and core. copy
have different access permissions. If the unmask value didn't change between the creation
of the two files, explain how the difference could have occurred.

4.8 When running the program in Figure 4.16, we check the available disk space with the
df (1) command. Why didn't we use the du(1) command?

4.9 In Eigure 4.20, we show the unl i nk function as modifying the changed-status time of the
file itself. How can this happen?

4.10 In Section 4.21, how does the system's limit on the number of open files affect the nyftw
function?

4.11 In Section 4.21, our version of ftw never changes its directory. Modify this routine so
that each time it encounters a directory, it does a chdi r to that directory, allowing it to
use the filename and not the pathname for each call to | st at . When all the entries in a
directory have been processed, execute chdir(".."). Compare the time used by this
version and the version in the text.

4.12 Each process also has a root directory that is used for resolution of absolute pathnames.
This root directory can be changed with the chr oot function. Look up the description for
this function in your manuals. When might this function be useful?

4.13 How can you set only one of the two time values with the uti ne function?



4.14 Some versions of the fi nger (1) command output "New mail received ..." and "unread
since ..." where ... are the corresponding times and dates. How can the program
determine these two times and dates?

4.15 Examine the archive formats by the cpi 0(1) and t ar (1) commands. (These descriptions
are usually found in Section 5 of the UNIX Programmer's Manual.) How many of the
three possible time values are saved for each file? When a file is restored, what value do
you think the access time is set to, and why?

4.16 Does the UNIX System have a fundamental limitation on the depth of a directory tree?
To find out, write a program that creates a directory and then changes to that directory,
in a loop. Make certain that the length of the absolute pathname of the leaf of this
directory is greater than your system's PATH MAX limit. Can you call get cwd to fetch the
directory's pathname? How do the standard UNIX System tools deal with this long
pathname? Can you archive the directory using either tar or cpi 0?

4.17 In Section 3.16, we described the / dev/ f d feature. For any user to be able to access
these files, their permissions must be rwrw rw . Some programs that create an output
file delete the file first, in case it already exists, ignoring the return code:

unl i nk( pat h);
if ((fd = creat(path, FILE_MODE)) < 0)
err_sys(...);

What happens if path is /dev/fd/ 1?
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5.1. Introduction

In this chapter, we describe the standard 1/0 library. This library is specified by the ISO C standard
because it has been implemented on many operating systems other than the UNIX System.
Additional interfaces are defined as extensions to the ISO C standard by the Single UNIX
Specification.

The standard 1/0 library handles such details as buffer allocation and performing 1/0 in optimal-sized
chunks, obviating our need to worry about using the correct block size (as in Section 3.9). This
makes the library easy to use, but at the same time introduces another set of problems if we're not
cognizant of what's going on.

The standard 1/0 library was written by Dennis Ritchie around 1975. It was a major revision of
the Portable 1/0 library written by Mike Lesk. Surprisingly, little has changed in the standard 1/0
library after 30 years.
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5.2. Streams and FI LE Objects

In Chapter 3, all the 1/0 routines centered around file descriptors. When a file is opened, a file
descriptor is returned, and that descriptor is then used for all subsequent 1/0 operations. With the
standard 1/0 library, the discussion centers around streams. (Do not confuse the standard 1/0 term
stream with the STREAMS 1/0 system that is part of System V and standardized in the XSI STREAMS
option in the Single UNIX Specification.) When we open or create a file with the standard 1/0 library,
we say that we have associated a stream with the file.

With the ASCII character set, a single character is represented by a single byte. With international
character sets, a character can be represented by more than one byte. Standard 1/0 file streams can
be used with single-byte and multibyte ("wide") character sets. A stream's orientation determines
whether the characters that are read and written are single-byte or multibyte. Initially, when a
stream is created, it has no orientation. If a multibyte 1/0 function (see <wchar. h>) is used on a
stream without orientation, the stream’'s orientation is set to wide-oriented. If a byte 1/0 function is
used on a stream without orientation, the stream's orientation is set to byte-oriented. Only two
functions can change the orientation once set. The freopen function (discussed shortly) will clear a
stream’s orientation; the f wi de function can be used to set a stream's orientation.

#i ncl ude <stdio. h>
#i ncl ude <wchar. h>

int fwide(FILE *fp, int mode);

Returns: positive if stream is wide-oriented,
negative if stream is byte-oriented,
or O if stream has no orientation

The fwi de function performs different tasks, depending on the value of the mode argument.

¢ If the mode argument is negative, fwi de will try to make the specified stream byte-oriented.
e If the mode argument is positive, f wi de will try to make the specified stream wide-oriented.

e If the mode argument is zero, fwi de will not try to set the orientation, but will still return a
value identifying the stream's orientation.

Note that f wi de will not change the orientation of a stream that is already oriented. Also note that
there is no error return. Consider what would happen if the stream is invalid. The only recourse we
have is to clear errno before calling f wi de and check the value of er r no when we return. Throughout



the rest of this book, we will deal only with byte-oriented streams.

When we open a stream, the standard 1/0 function f open returns a pointer to a Fl LE object. This
object is normally a structure that contains all the information required by the standard 1/0 library to
manage the stream: the file descriptor used for actual 1/0, a pointer to a buffer for the stream, the
size of the buffer, a count of the number of characters currently in the buffer, an error flag, and the
like.

Application software should never need to examine a FI LE object. To reference the stream, we pass
its FI LE pointer as an argument to each standard 1/0 function. Throughout this text, we'll refer to a
pointer to a FI LE object, the type FI LE * as a file pointer.

Throughout this chapter, we describe the standard 1/0 library in the context of a UNIX system. As we
mentioned, this library has already been ported to a wide variety of other operating systems. But to
provide some insight about how this library can be implemented, we will talk about its typical
implementation on a UNIX system.
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5.3. Standard Input, Standard Output, and Standard Error

Three streams are predefined and automatically available to a process: standard input, standard
output, and standard error. These streams refer to the same files as the file descriptors
STDI N_FI LENO, STDOUT_FI LENO, and STDERR_FI LENO, which we mentioned in Section 3.2.

These three standard 1/0 streams are referenced through the predefined file pointers st di n, st dout
and st derr. The file pointers are defined in the <st di 0. h> header.
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5.4. Buffering

The goal of the buffering provided by the standard 1/0 library is to use the minimum number of r ead
and writ e calls. (Recall Figure 3.5, where we showed the amount of CPU time required to perform
1/0 using various buffer sizes.) Also, it tries to do its buffering automatically for each 1/0 stream,
obviating the need for the application to worry about it. Unfortunately, the single aspect of the
standard 1/0 library that generates the most confusion is its buffering.

Three types of buffering are provided:

1. Fully buffered. In this case, actual 1/0 takes place when the standard 1/0 buffer is filled. Files
residing on disk are normally fully buffered by the standard 1/0 library. The buffer used is
usually obtained by one of the standard 1/0 functions calling mal | oc (Section 7.8) the first time
1/0 is performed on a stream.

The term flush describes the writing of a standard 1/0 buffer. A buffer can be flushed
automatically by the standard 1/0 routines, such as when a buffer fills, or we can call the
function f f | ush to flush a stream. Unfortunately, in the UNIX environment, flush means two
different things. In terms of the standard 1/0 library, it means writing out the contents of a
buffer, which may be partially filled. In terms of the terminal driver, such as the t cfl ush
functionin Chapter 18, it means to discard the data that's already stored in a buffer.

2. Line buffered. In this case, the standard 1/0 library performs 1/0 when a newline character is
encountered on input or output. This allows us to output a single character at a time (with the
standard 1/0 f put ¢ function), knowing that actual 1/0 will take place only when we finish writing
each line. Line buffering is typically used on a stream when it refers to a terminal: standard
input and standard output, for example.

Line buffering comes with two caveats. First, the size of the buffer that the standard 1/0 library
is using to collect each line is fixed, so 170 might take place if we fill this buffer before writing a
newline. Second, whenever input is requested through the standard 1/0 library from either (a)
an unbuffered stream or (b) a line-buffered stream (that requires data to be requested from the
kernel), all line-buffered output streams are flushed. The reason for the qualifier on (b) is that
the requested data may already be in the buffer, which doesn't require data to be read from the
kernel. Obviously, any input from an unbuffered stream, item (a), requires data to be obtained
from the kernel.

3. Unbuffered. The standard 1/0 library does not buffer the characters. If we write 15 characters
with the standard 1/0 f put s function, for example, we expect these 15 characters to be output
as soon as possible, probably with the wri t e function from Section 3.8.

The standard error stream, for example, is normally unbuffered. This is so that any error
messages are displayed as quickly as possible, regardless of whether they contain a newline.

ISO C requires the following buffering characteristics.



e Standard input and standard output are fully buffered, if and only if they do not refer to an
interactive device.

e Standard error is never fully buffered.
This, however, doesn't tell us whether standard input and standard output can be unbuffered or line
buffered if they refer to an interactive device and whether standard error should be unbuffered or line
buffered. Most implementations default to the following types of buffering.

e Standard error is always unbuffered.

¢ All other streams are line buffered if they refer to a terminal device; otherwise, they are fully
buffered.

The four platforms discussed in this book follow these conventions for standard 1/0
buffering: standard error is unbuffered, streams open to terminal devices are line buffered,
and all other streams are fully buffered.

We explore standard 1/0 buffering in more detail in Section 5.12 and Figure 5.11.

If we don't like these defaults for any given stream, we can change the buffering by calling either of
the following two functions.

View full width

#i ncl ude <stdio. h>

void setbuf (FILE *restrict fp, char *restrict buf);
int setvbuf(FILE *restrict fp, char *restrict buf,

=nt mode,
size t size) ;

Returns: O if OK, nonzero on error

These functions must be called after the stream has been opened (obviously, since each requires a
valid file pointer as its first argument) but before any other operation is performed on the stream.

With set buf , we can turn buffering on or off. To enable buffering, buf must point to a buffer of length
BUFSI Z, a constant defined in <st di 0. h>. Normally, the stream is then fully buffered, but some
systems may set line buffering if the stream is associated with a terminal device. To disable buffering,
we set buf to NULL.

With set vbuf , we specify exactly which type of buffering we want. This is done with the mode
argument:



_| OFBF fully
buffered

_ | OLBF line
buffered

_| ONBF unbuffered

If we specify an unbuffered stream, the buf and size arguments are ignored. If we specify fully
buffered or line buffered, buf and size can optionally specify a buffer and its size. If the stream is
buffered and buf is NULL, the standard 1/0 library will automatically allocate its own buffer of the
appropriate size for the stream. By appropriate size, we mean the value specified by the constant
BUFSI Z.

Some C library implementations use the value from the st _bl ksi ze member of the st at
structure (see Section 4.2) to determine the optimal standard 1/0 buffer size. As we will see
later in this chapter, the GNU C library uses this method.

Figure 5.1 summarizes the actions of these two functions and their various options.

Figure 5.1. Summary of the set buf and set vbuf functions

Function | mode buf Buffer and length Type of buffering
non-null | user buf of length BUFSI Z fully buffered or line
set buf buffered
NULL (no buffer) unbuffered
non-null | user buf of length size
_IOLBF fully buffered
NULL system buffer of appropriate length
set vbuf non-null | user buf of length size
_| OFBF line buffered
NUL L system buffer of appropriate length
_I ONBF | (ignored) | (no buffer) unbuffered

Be aware that if we allocate a standard 1/0 buffer as an automatic variable within a function, we have
to close the stream before returning from the function. (We'll discuss this more in Section 7.8.) Also,
some implementations use part of the buffer for internal bookkeeping, so the actual number of bytes
of data that can be stored in the buffer is less than size. In general, we should let the system choose
the buffer size and automatically allocate the buffer. When we do this, the standard 1/0 library
automatically releases the buffer when we close the stream.

At any time, we can force a stream to be flushed.



#i ncl ude <stdi o. h>

int fflush(FILE *fp);

Returns: O if OK, ECF on error

This function causes any unwritten data for the stream to be passed to the kernel. As a special case,
if fp is NULL, this function causes all output streams to be flushed.
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5.5. Opening a Stream

The following three functions open a standard 1/0 stream.

View full width

#i ncl ude <stdi o. h>

FI LE *fopen(const char *restrict pathname const
= har *restrict type);

FI LE *freopen(const char *restrict pathname const
™ har *restrict type
FILE *restrict fp);

FI LE *fdopen(int filedes, const char *type);

All three return: file pointer if OK, NULL on error

The differences in these three functions are as follows.

1. The fopen function opens a specified file.

2. The freopen function opens a specified file on a specified stream, closing the stream first if it is
already open. If the stream previously had an orientation, f r eopen clears it. This function is
typically used to open a specified file as one of the predefined streams: standard input,
standard output, or standard error.

3. The f dopen function takes an existing file descriptor, which we could obtain from the open, dup,
dup2, fcntl, pi pe, socket, socket pai r, or accept functions, and associates a standard 1/0
stream with the descriptor. This function is often used with descriptors that are returned by the
functions that create pipes and network communication channels. Because these special types
of files cannot be opened with the standard 1/0 f open function, we have to call the device-
specific function to obtain a file descriptor, and then associate this descriptor with a standard
1/0 stream using f dopen.

Both f open and f reopen are part of ISO C; f dopen is part of POSIX.1, since 1ISO C doesn't
deal with file descriptors.

ISO C specifies 15 values for the type argument, shown in Figure 5.2.



Figure 5.2. The type argument for opening a standard
1/0 stream

type Description
rorrb open for reading
wor wh truncate to O length or create for writing
aor ab append; open for writing at end of file, or create for
writing

r+orr+b or rb+ | open for reading and writing

w+ or w+b or wb+ | truncate to O length or create for reading and writing

a+ or a+b or ab+ | open or create for reading and writing at end of file

Using the character b as part of the type allows the standard 1/0 system to differentiate between a
text file and a binary file. Since the UNIX kernel doesn't differentiate between these types of files,
specifying the character b as part of the type has no effect.

With f dopen, the meanings of the type argument differ slightly. The descriptor has already been
opened, so opening for write does not truncate the file. (If the descriptor was created by the open
function, for example, and the file already existed, the O TRUNC flag would control whether or not the
file was truncated. The f dopen function cannot simply truncate any file it opens for writing.) Also, the
standard 1/0 append mode cannot create the file (since the file has to exist if a descriptor refers to

it).

When a file is opened with a type of append, each write will take place at the then current end of file.
If multiple processes open the same file with the standard 1/0 append mode, the data from each
process will be correctly written to the file.

Versions of f open from Berkeley before 4.4BSD and the simple version shown on page 177 of
Kernighan and Ritchie [1988] do not handle the append mode correctly. These versions do an

| seek to the end of file when the stream is opened. To correctly support the append mode when
multiple processes are involved, the file must be opened with the O APPEND flag, which we
discussed in Section 3.3. Doing an | seek before each write won't work either, as we discussed in
Section 3.11.

When a file is opened for reading and writing (the plus sign in the type), the following restrictions
apply.
e Output cannot be directly followed by input without an intervening f f | ush, f seek, f set pos,or

rewi nd.

¢ Input cannot be directly followed by output without an intervening f seek, f set pos,or rew nd, or
an input operation that encounters an end of file.



We can summarize the six ways to open a stream from Figure 5.2 in Figure 5.3.

Figure 5.3. Six ways to open a standard
1/0 stream

Restriction r w | a |[r+|w|a+
file must already exist - -
previous contents of file - -
discarded
stream can be read - e | e | o
stream can be written ] e | e | o | o
stream can be written only - -
atend

Note that if a new file is created by specifying a type of either wor a, we are not able to specify the
file's access permission bits, as we were able to do with the open function and the creat function in

Chapter 3.

By default, the stream that is opened is fully buffered, unless it refers to a terminal device, in which
case it is line buffered. Once the stream is opened, but before we do any other operation on the
stream, we can change the buffering if we want to, with the set buf or set vbuf functions from the
previous section.

An open stream is closed by calling f cl ose.

#i ncl ude <stdi o. h>

int fclose(FlILE *fp);

Returns: O if OK, ECF on error

Any buffered output data is flushed before the file is closed. Any input data that may be buffered is
discarded. If the standard 1/0 library had automatically allocated a buffer for the stream, that buffer
is released.

When a process terminates normally, either by calling the exi t function directly or by returning from



e rrev | nexr
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5.6. Reading and Writing a Stream

Once we open a stream, we can choose from among three types of unformatted 1/0:

1. Character-at-a-time 1/0. We can read or write one character at a time, with the standard 1/0
functions handling all the buffering, if the stream is buffered.

2. Line-at-a-time 1/0. If we want to read or write a line at a time, we use fgets and f puts. Each
line is terminated with a newline character, and we have to specify the maximum line length
that we can handle when we call f get s. We describe these two functions in Section 5.7.

3. Direct I/0. This type of 1/0 is supported by the fread and fw it e functions. For each 1/0
operation, we read or write some number of objects, where each object is of a specified size.
These two functions are often used for binary files where we read or write a structure with each
operation. We describe these two functions in Section 5.9.

The term direct 1/0, from the ISO C standard, is known by many names: binary 1/0,
object-at-a-time 1/0, record-oriented 1/0, or structure-oriented 1/0.

(We describe the formatted 1/0 functions, such as printf and scanf, in Section 5.11.)

Input Functions

Three functions allow us to read one character at a time.

#i ncl ude <stdio. h>
int getc(FILE *fp);
int fgetc(FILE *fp);

int getchar(void);

All three return: next character if OK, ECF on end of file or error

The function get char is defined to be equivalent to get c(st di n) . The difference between the first two
functions is that get ¢ can be implemented as a macro, whereas f get ¢ cannot be implemented as a



macro. This means three things.

1. The argument to get ¢ should not be an expression with side effects.

2. Since f get ¢ is guaranteed to be a function, we can take its address. This allows us to pass the
address of f get c as an argument to another function.

3. Calls to f get c probably take longer than calls to get c, as it usually takes more time to call a
function.

These three functions return the next character as an unsi gned char converted to anint. The reason
for specifying unsigned is so that the high-order bit, if set, doesn't cause the return value to be
negative. The reason for requiring an integer return value is so that all possible character values can
be returned, along with an indication that either an error occurred or the end of file has been
encountered. The constant EOF in <st di 0. h> is required to be a negative value. Its value is often 1.
This representation also means that we cannot store the return value from these three functions in a
character variable and compare this value later against the constant ECF.

Note that these functions return the same value whether an error occurs or the end of file is reached.
To distinguish between the two, we must call either ferror or f eof .

#i ncl ude <stdio. h>
int ferror(FILE *fp);

int feof (FILE *fp);

Both return: nonzero (true) if condition is true, O (false) otherwise

voi d clearerr(FlILE *fp);

In most implementations, two flags are maintained for each stream in the FI LE object:

e An error flag
¢ An end-of-file flag
Both flags are cleared by calling cl earerr .

After reading from a stream, we can push back characters by calling unget c.



#i ncl ude <stdi o. h>

int ungetc(int c, FILE *fp);

Returns: c if OK, EOF on error

The characters that are pushed back are returned by subsequent reads on the stream in reverse
order of their pushing. Be aware, however, that although 1SO C allows an implementation to support
any amount of pushback, an implementation is required to provide only a single character of
pushback. We should not count on more than a single character.

The character that we push back does not have to be the same character that was read. We are not
able to push back ECF. But when we've reached the end of file, we can push back a character. The
next read will return that character, and the read after that will return EOF. This works because a
successful call to unget ¢ clears the end-of-file indication for the stream.

Pushback is often used when we're reading an input stream and breaking the input into words or
tokens of some form. Sometimes we need to peek at the next character to determine how to handle
the current character. It's then easy to push back the character that we peeked at, for the next call
to get ¢ to return. If the standard 1/0 library didn't provide this pushback capability, we would have to
store the character in a variable of our own, along with a flag telling us to use this character instead
of calling get ¢ the next time we need a character.

When we push characters back with unget c, they don't get written back to the underlying file or
device. They are kept incore in the standard 1/0 library's buffer for the stream.

Output Functions

We'll find an output function that corresponds to each of the input functions that we've already
described.



#i ncl ude <stdio. h>
int putc(int c, FILE *fp);
int fputc(int ¢, FILE *fp);

int putchar(int c);

All three return: c if OK, ECF on error

Like the input functions, put char (c) is equivalent to putc(c, stdout), and putc can be implemented
as a macro, whereas f put c cannot be implemented as a macro.
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5.7. Line-at-a-Time 1/O

Line-at-a-time input is provided by the following two functions.

View full width

#i ncl ude <stdi o. h>

char *fgets(char *restrict buf, int n, FILE
=restrict fp);

char *gets(char *buf);

Both return: buf if OK, NULL on end of file or error

Both specify the address of the buffer to read the line into. The get s function reads from standard
input, whereas f get s reads from the specified stream.

With f get s, we have to specify the size of the buffer, n. This function reads up through and including
the next newline, but no more than nl characters, into the buffer. The buffer is terminated with a null
byte. If the line, including the terminating newline, is longer than n1, only a partial line is returned,
but the buffer is always null terminated. Another call to f get s will read what follows on the line.

The get s function should never be used. The problem is that it doesn't allow the caller to specify the
buffer size. This allows the buffer to overflow, if the line is longer than the buffer, writing over
whatever happens to follow the buffer in memory. For a description of how this flaw was used as part
of the Internet worm of 1988, see the June 1989 issue (vol. 32, no. 6) of Communications of the
ACM . An additional difference with get s is that it doesn't store the newline in the buffer, as does
fgets.

This difference in newline handling between the two functions goes way back in the evolution of
the UNIX System. Even the Version 7 manual (1979) states "get s deletes a newline, f gets
keeps it, all in the name of backward compatibility."

Even though ISO C requires an implementation to provide get s, use f get s instead.

Line-at-a-time output is provided by f put s and put s.



View full width

#i ncl ude <stdi o. h>

int fputs(const char *restrict str, FILE *restrict
[~
) ;

int puts(const char *sfr);

Both return: non-negative value if OK, ECF on error

The function f put s writes the null-terminated string to the specified stream. The null byte at the end
is not written. Note that this need not be line-at-a-time output, since the string need not contain a

newline as the last non-null character. Usually, this is the casethe last non-null character is a
newlinebut it's not required.

The put s function writes the null-terminated string to the standard output, without writing the null
byte. But put s then writes a newline character to the standard output.

The put s function is not unsafe, like its counterpart get s. Nevertheless, we'll avoid using it, to

prevent having to remember whether it appends a newline. If we always use fgets and f put s, we
know that we always have to deal with the newline character at the end of each line.
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5.8. Standard 1/O Efficiency

Using the functions from the previous section, we can get an idea of the efficiency of the standard 1/0
system. The program in Figure 5.4 is like the one in Figure 3.4: it simply copies standard input to
standard output, using get c and put c. These two routines can be implemented as macros.

Figure 5.4. Copy standard input to standard output using getc and putc

#i ncl ude "apue. h"

i nt
mai n( voi d)
{
i nt c;
while ((c = getc(stdin)) !'= EOF)
if (putc(c, stdout) == EOF)
err_sys("output error");
if (ferror(stdin))
err_sys("input error");
exit(0);
}

We can make another version of this program that uses f get ¢ and f put ¢, which should be functions,
not macros. (We don't show this trivial change to the source code.)

Finally, we have a version that reads and writes lines, shown in Figure 5.5.

Figure 5.5. Copy standard input to standard output using fgets and f puts

#i ncl ude "apue. h"

i nt
mai n(voi d)
{
char buf [ MAXLI NE] ;

while (fgets(buf, MAXLINE, stdin) !'= NULL)



i f (fputs(buf,

st dout)

== EOF)

err_sys("output error");

if (ferror(stdin))

err_sys("input error");

exit(0);

Note that we do not close the standard 1/0 streams explicitly in Figure 5.4 or Figure 5.5. Instead, we
know that the exi t function will flush any unwritten data and then close all open streams. (We'll
discuss this in Section 8.5.) It is interesting to compare the timing of these three programs with the
timing data from Figure 3.5. We show this data when operating on the same file (98.5 MB with 3

million lines) in Figure 5.6.

Figure 5.6. Timing results using standard 170 routines

Function User CPU System CPU Clock time Bytes of
(seconds) (seconds) (seconds) program text
best time from Figure 3.5 0.01 0.18 6.67
fgets, fputs 2.59 0.19 7.15 139
getc, putc 10.84 0.27 12.07 120
fgetc, fputc 10.44 0.27 11.42 120
single byte time from Figure 3.5 124.89 161.65 288.64

For each of the three standard 1/0 versions, the user CPU time is larger than the best r ead version
from Figure 3.5, because the character-at-a-time standard 1/0 versions have a loop that is executed
100 million times, and the loop in the line-at-a-time version is executed 3,144,984 times. In the read
version, its loop is executed only 12,611 times (for a buffer size of 8,192). This difference in clock
times is from the difference in user times and the difference in the times spent waiting for 1/0 to
complete, as the system times are comparable.

The system CPU time is about the same as before, because roughly the same number of kernel
requests are being made. Note that an advantage of using the standard 1/0 routines is that we don't
have to worry about buffering or choosing the optimal 1/0 size. We do have to determine the
maximum line size for the version that uses f get s, but that's easier than trying to choose the optimal

1/0 size.

The final column in Figure 5.6 is the number of bytes of text spacethe machine instructions generated
by the C compilerfor each of the mai n functions. We can see that the version using get ¢ and put c
takes the same amount of space as the one using the f get c and f put ¢ functions. Usually, get ¢ and
put ¢ are implemented as macros, but in the GNU C library implementation, the macro simply




expands to a function call.

The version using line-at-a-time 1/0 is almost twice as fast as the version using character-at-a-time
1/0. If the f gets and f put s functions are implemented using get ¢ and put c (see Section 7.7 of
Kernighan and Ritchie [1988], for example), then we would expect the timing to be similar to the
get ¢ version. Actually, we might expect the line-at-a-time version to take longer, since we would be
adding the overhead of 200 million extra function calls to the existing 6 million ones. What is
happening with this example is that the line-at-a-time functions are implemented using nenccpy(3).
Often, the menctcpy function is implemented in assembler instead of C, for efficiency.

The last point of interest with these timing numbers is that the f get ¢ version is so much faster than
the BUFFSI ZE=1 version from Figure 3.5. Both involve the same number of function callsabout 200
millionyet the f get ¢ version is almost 12 times faster in user CPU time and slightly more than 25
times faster in clock time. The difference is that the version using r ead executes 200 million function
calls, which in turn execute 200 million system calls. With the f get ¢ version, we still execute 200
million function calls, but this ends up being only 25,222 system calls. System calls are usually much
more expensive than ordinary function calls.

As a disclaimer, you should be aware that these timing results are valid only on the single system
they were run on. The results depend on many implementation features that aren't the same on
every UNIX system. Nevertheless, having a set of numbers such as these, and explaining why the
various versions differ, helps us understand the system better. From this section and Section 3.9,
we've learned that the standard 1/0 library is not much slower than calling the read and wite
functions directly. The approximate cost that we've seen is about 0.11 seconds of CPU time to copy a
megabyte of data using get ¢ and put c. For most nontrivial applications, the largest amount of the
user CPU time is taken by the application, not by the standard 1/0 routines.

=TT e rrcy | nexr



=TeTe e prev | nexr o

5.9. Binary I/O

The functions from Section 5.6 operated with one character at a time, and the functions from Section
5.7 operated with one line at a time. If we're doing binary 1/0, we often would like to read or write an
entire structure at a time. To do this using get ¢ or put c, we have to loop through the entire structure,
one byte at a time, reading or writing each byte. We can't use the line-at-a-time functions, since

f put s stops writing when it hits a null byte, and there might be null bytes within the structure.
Similarly, f get s won't work right on input if any of the data bytes are nulls or newlines. Therefore,
the following two functions are provided for binary 1/0.

View full width

#i ncl ude <stdi o. h>

size_t fread(void *restrict ptr, size_t size,
=.ize_ t nobj,
FILE *restrict fp);

size_t fwite(const void *restrict ptr, size_t
™ize, size_t nobj,
FILE *restrict fp);

Both return: number of objects read or written

These functions have two common uses:

1. Read or write a binary array. For example, to write elements 2 through 5 of a floating-point
array, we could write

fl oat data[10];

if (fwite(&data[2], sizeof(float), 4, fp) != 4)
err_sys("fwite error");

Here, we specify size as the size of each element of the array and nobj as the number of
elements.



2. Read or write a structure. For example, we could write

struct {

short count ;

| ong total;

char name[ NAVESI ZE] ;
} item

if (fwite(& tem sizeof(item), 1, fp) !'=1)
err_sys("fwite error");

Here, we specify size as the size of structure and nobj as one (the number of objects to write).

The obvious generalization of these two cases is to read or write an array of structures. To do this,
size would be the si zeof the structure, and nobj would be the number of elements in the array.

Both fread and fw it e return the number of objects read or written. For the read case, this number
can be less than nobj if an error occurs or if the end of file is encountered. In this case ferror or f eof
must be called. For the write case, if the return value is less than the requested nobj, an error has
occurred.

A fundamental problem with binary 1/0 is that it can be used to read only data that has been written
on the same system. This was OK many years ago, when all the UNIX systems were PDP-11s, but
the norm today is to have heterogeneous systems connected together with networks. It is common
to want to write data on one system and process it on another. These two functions won't work, for
two reasons.

1. The offset of a member within a structure can differ between compilers and systems, because of
different alignment requirements. Indeed, some compilers have an option allowing structures to
be packed tightly, to save space with a possible runtime performance penalty, or aligned
accurately, to optimize runtime access of each member. This means that even on a single
system, the binary layout of a structure can differ, depending on compiler options.

2. The binary formats used to store multibyte integers and floating-point values differ among
machine architectures.

We'll touch on some of these issues when we discuss sockets in Chapter 16. The real solution for
exchanging binary data among different systems is to use a higher-level protocol. Refer to Section
8.2 of Rago [1993] or Section 5.18 of Stevens, Fenner, & Rudoff [2004] for a description of some
techniques various network protocols use to exchange binary data.

We'll return to the fread function in Section 8.14 when we'll use it to read a binary structure, the
UNIX process accounting records.

=T=T @ prcy | wexr »



=TeTe e prev | nexr o

5.10. Positioning a Stream

There are three ways to position a standard 1/0 stream:

1. The two functions ftel |l and f seek. They have been around since Version 7, but they assume
that a file's position can be stored in a long integer.

2. The two functions ftel | o and f seeko. They were introduced in the Single UNIX Specification to
allow for file offsets that might not fit in a long integer. They replace the long integer with the
of f _t data type.

3. The two functions f get pos and f set pos. They were introduced by ISO C. They use an abstract
data type, f pos_t, that records a file's position. This data type can be made as big as necessary
to record a file's position.

Portable applications that need to move to non-UNIX systems should use f get pos and f set pos.

#i ncl ude <stdi o. h>

long ftell (FILE *fp);

Returns: current file position indicator if OK, 1L on error

int fseek(FILE *fp, |ong offset, int whence);

Returns: O if OK, nonzero on error

voi d rew nd(FILE *fp);

For a binary file, a file's position indicator is measured in bytes from the beginning of the file. The
value returned by ftel | for a binary file is this byte position. To position a binary file using f seek, we
must specify a byte offset and how that offset is interpreted. The values for whence are the same as



for the | seek function from Section 3.6: SEEK_SET means from the beginning of the file, SEEK_CUR
means from the current file position, and SEEK_END means from the end of file. ISO C doesn't require
an implementation to support the SEEK_END specification for a binary file, as some systems require a
binary file to be padded at the end with zeros to make the file size a multiple of some magic nhumber.
Under the UNIX System, however, SEEK _END is supported for binary files.

For text files, the file's current position may not be measurable as a simple byte offset. Again, this is
mainly under non-UNIX systems that might store text files in a different format. To position a text
file, whence has to be SEEK_SET, and only two values for offset are allowed: Omeaning rewind the file
to its beginningor a value that was returned by ftel | for that file. A stream can also be set to the
beginning of the file with the r ewi nd function.

The ftell o function is the same as ftel | , and the f seeko function is the same as f seek, except that
the type of the offset is of f _t instead of | ong.

#i ncl ude <stdi o. h>

off _t ftello(FILE *fp);

Returns: current file position indicator if OK, (of f _t)1 on error

int fseeko(FILE *fp, off_t offset, int whence);

Returns: O if OK, nonzero on error

Recall the discussion of the of f _t data type in Section 3.6. Implementations can define the of f _t
type to be larger than 32 bits.

As we mentioned, the f get pos and f set pos functions were introduced by the I1SO C standard.

#i ncl ude <stdio. h>
int fgetpos(FILE *restrict fp, fpos_t *restrict pos);

int fsetpos(FlILE *fp, const fpos_t *pos):;

Both return: O if OK, nonzero on error




The f get pos function stores the current value of the file's position indicator in the object pointed to by
pos. This value can be used in a later call to f set pos to reposition the stream to that location.

=TeTe e prev | nexr



=TeTe e prev | nexr o

5.11. Formatted 1/0O

Formatted Output

Formatted output is handled by the four printf functions.

View full width

#i ncl ude <stdio. h>
int printf(const char *restrict format, ...);

int fprintf(FILE *restrict fp, const char
®™restrict format, ...);

Both return: number of characters output if OK, negative value if output error

View full width

int sprintf(char *restrict buf, const char
®™restrict format, ...);

int snprintf(char *restrict buf, size_t n,
const char *restrict format, ...);

Both return: number of characters stored in array if OK, negative value if encoding error

The printf function writes to the standard output, f pri ntf writes to the specified stream, and
sprintf places the formatted characters in the array buf. The spri ntf function automatically appends
a null byte at the end of the array, but this null byte is not included in the return value.

Note that it's possible for sprintf to overflow the buffer pointed to by buf. It's the caller's
responsibility to ensure that the buffer is large enough. Because this can lead to buffer-overflow
problems, snprintf was introduced. With it, the size of the buffer is an explicit parameter; any
characters that would have been written past the end of the buffer are discarded instead. The
snprintf function returns the number of characters that would have been written to the buffer had it
been big enough. As with sprintf, the return value doesn't include the terminating null byte. If



snprintf returns a positive value less than the buffer size n, then the output was not truncated. If an
encoding error occurs, snprintf returns a negative value.

The format specification controls how the remainder of the arguments will be encoded and ultimately
displayed. Each argument is encoded according to a conversion specification that starts with a
percent sign (%). Except for the conversion specifications, other characters in the format are copied
unmodified. A conversion specification has four optional components, shown in square brackets
below:

% flags][fldw dth][precision][lennodifier]convtype

The flags are summarized in Figure 5.7.

Figure 5.7. The flags component of a conversion specification

Flag Description

- left-justify the output in the field

+ always display sign of a signed conversion

(space) prefix by a space if no sign is generated

# convert using alternate form (include Ox prefix for hex format, for
example)
0 prefix with leading zeros instead of padding with spaces

The f1 dwi dt h component specifies a minimum field width for the conversion. If the conversion results
in fewer characters, it is padded with spaces. The field width is a non-negative decimal integer or an
asterisk.

The preci si on component specifies the minimum number of digits to appear for integer conversions,
the minimum number of digits to appear to the right of the decimal point for floating-point
conversions, or the maximum number of bytes for string conversions. The precision is a period (.)
followed by a optional non-negative decimal integer or an asterisk.

Both the field width and precision can be an asterisk. In this case, an integer argument specifies the
value to be used. The argument appears directly before the argument to converted.

The | ennodi fi er component specifies the size of the argument. Possible values are summarized in
Figure 5.8.

Figure 5.8. The length modifier component



of a conversion specification

Length modifier Description
hh signed or unsigned char
h signed or unsigned shor t

I signed or unsigned | ong or wide
character

I signed or unsigned | ong | ong

j i nt max_t or ui nt max_t

z size_t

t ptrdiff _t

L | ong doubl e

The convt ype component is not optional. It controls how the argument is interpreted. The various
conversion types are summarized in Figure 5.9.

Figure 5.9. The conversion type component of a conversion specification

Conversion type Description

d,i signed decimal

0 unsigned octal

u unsigned decimal

X, X unsigned hexadecimal

f,F doubl e floating-point number

e, E doubl e floating-point number in exponential format

g,.G interpreted as f, F, e, or E, depending on value converted
a, A doubl e floating-point number in hexadecimal exponential format
c character (with | length modifier, wide character)

s string (with | length modifier, wide character string)

p pointer to a voi d




Conversion type Description

n pointer to a signed integer into which is written the number of characters written
so far

% a % character

C wide character (an XSI extension, equivalent to | ¢)

S wide character string (an XSI extension, equivalent to | s)

The following four variants of the pri ntf family are similar to the previous four, but the variable
argument list (.. .) is replaced with arg.

View full width

#i ncl ude <stdarg. h>
#i ncl ude <stdio. h>

int vprintf(const char *restrict format, va_ list arg);
int vfprintf(FILE *restrict fp, const char

=restrict format,
va_list arg);

Both return: number of characters output if OK, negative value if output error

View full width

int vsprintf(char *restrict buf, const char
=restrict format,
va_list arg);

int vsnprintf(char *restrict buf, size_t n,
const char *restrict format, va_li st
=rg) ;

Both return: number of characters stored in array if OK, negative value if encoding error

We use the vsnprintf function in the error routines in Appendix B.

Refer to Section 7.3 of Kernighan and Ritchie [1988] for additional details on handling variable-length
argument lists with ISO Standard C. Be aware that the variable-length argument list routines



provided with 1SO Cthe <st dar g. h> header and its associated routinesdiffer from the <varargs. h>
routines that were provided with older UNIX systems.

Formatted Input

Formatted input is handled by the three scanf functions.

View full width
#i ncl ude <stdio. h>
int scanf(const char *restrict format, ...);

int fscanf(FILE *restrict fp, const char *restrict
=ormat, ...);

i nt sscanf(const char *restrict buf, const char
™ restrict format,

)

All three return: number of input items assigned,
ECF if input error or end of file before any conversion

The scanf family is used to parse an input string and convert character sequences into variables of
specified types. The arguments following the format contain the addresses of the variables to
initialize with the results of the conversions.

The format specification controls how the arguments are converted for assignment. The percent sign
(%) indicates the start of a conversion specification. Except for the conversion specifications and
white space, other characters in the format have to match the input. If a character doesn't match,
processing stops, leaving the remainder of the input unread.

There are three optional components to a conversion specification, shown in square brackets below:

W*][fldwi dth][]l ennodifier]convtype

The optional leading asterisk is used to suppress conversion. Input is converted as specified by the
rest of the conversion specification, but the result is not stored in an argument.

The f1 dwi dt h component specifies the maximum field width in characters. The | ennodi fi er
component specifies the size of the argument to be initialized with the result of the conversion. The
same length modifiers supported by the pri nt f family of functions are supported by the scanf family



of functions (see Figure 5.8 for a list of the length modifiers).

The convt ype field is similar to the conversion type field used by the printf family, but there are
some differences. One difference is that results that are stored in unsigned types can optionally be
signed on input. For example, 1 will scan as 4294967295 into an unsigned integer. Figure 5.10
summarizes the conversion types supported by the scanf family of functions.

Figure 5.10. The conversion type component of a conversion specification

Conversion Description
type
d signed decimal, base 10
i signed decimal, base determined by format of input
o} unsigned octal (input optionally signed)

u

unsigned decimal, base 10 (input optionally signed)

X

unsigned hexadecimal (input optionally signed)

a,A e Ef,Fg G

floating-point number

Cc

character (with | length modifier, wide character)

S

string (with | length modifier, wide character string)

matches a sequence of listed characters, ending with ]

[/\

matches all characters except the ones listed, ending with ]

p pointer to a voi d

n pointer to a signed integer into which is written the number of characters
read so far

% a % character

C wide character (an XSI extension, equivalent to | ¢)

S wide character string (an XSI extension, equivalent to | s)

As with the printf family, the scanf family also supports functions that use variable argument lists as

specified by <st dar g. h>.



View full width

#i ncl ude <stdarg. h>
#i ncl ude <stdio. h>

int vscanf(const char *restrict format, va_list arg);

int vfscanf(FILE *restrict fp, const char
"™ restrict format,
va_list arg);

int vsscanf(const char *restrict buf, const char
™restrict format,
va list arg);

All three return: number of input items assigned,
EOF if input error or end of file before any conversion

Refer to your UNIX system manual for additional details on the scanf family of functions.
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5.12. Implementation Details

As we've mentioned, under the UNIX System, the standard 1/0 library ends up calling the 1/0
routines that we described in Chapter 3. Each standard 1/0 stream has an associated file descriptor,
and we can obtain the descriptor for a stream by calling fil eno.

Note that fi | eno is not part of the ISO C standard, but an extension supported by POSIX.1.

#i ncl ude <stdi o. h>

int fileno(FILE *fp);

Returns: the file descriptor associated with the stream

We need this function if we want to call the dup or fcnt| functions, for example.

To look at the implementation of the standard 1/0 library on your system, start with the header
<stdi 0. h>. This will show how the FI LE object is defined, the definitions of the per-stream flags, and
any standard 1/0 routines, such as get ¢, that are defined as macros. Section 8.5 of Kernighan and
Ritchie [1988] has a sample implementation that shows the flavor of many implementations on UNIX
systems. Chapter 12 of Plauger [1992] provides the complete source code for an implementation of
the standard 1/0 library. The implementation of the GNU standard 1/0 library is also publicly
available.

Example

The program in Figure 5.11 prints the buffering for the three standard streams and for a stream that
is associated with a regular file.

Note that we perform 1I/0 on each stream before printing its buffering status, since the first 1/0
operation usually causes the buffers to be allocated for a stream. The structure members
_1Ofile_flags, IO buf_base, and _I O buf _end and the constants _| O UNBUFFERED and

_1 O_LI NE_BUFFERED are defined by the GNU standard 1/0 library used on Linux. Be aware that other
UNIX systems may have different implementations of the standard 1/0 library.

If we run the program in Figure 5.11 twice, once with the three standard streams connected to the
terminal and once with the three standard streams redirected to files, we get the following result:

$ ./a.out stdin, stdout, and stderr connected to terminal



enter any character

we type a newline
one line to standard error
stream = stdin, line buffered, buffer size = 1024
stream = stdout, line buffered, buffer size = 1024
stream = stderr, unbuffered, buffer size =1
stream = /etc/nmotd, fully buffered, buffer size = 4096
$ ./a.out < /etc/terntap > std.out 2> std.err

run it again with all three streans redirected

$ cat std.err

one line to standard error

$ cat std.out

enter any character

stream = stdin, fully buffered, buffer size = 4096
stream = stdout, fully buffered, buffer size = 4096
stream = stderr, unbuffered, buffer size =1

stream = /etc/notd, fully buffered, buffer size = 4096

We can see that the default for this system is to have standard input and standard output line

buffered when they're connected to a terminal. The line buffer is 1,024 bytes. Note that this doesn't
restrict us to 1,024-byte input and output lines; that's just the size of the buffer. Writing a 2,048-
byte line to standard output will require two wri t e system calls. When we redirect these two streams

to regular files, they become fully buffered, with buffer sizes equal to the preferred 1/0 sizethe

st _bl ksi ze value from the st at structurefor the file system. We also see that the standard error is

always unbuffered, as it should be, and that a regular file defaults to fully buffered.

Figure 5.11. Print buffering for various standard 1/0 streams

#i ncl ude "apue. h"

voi d pr_stdio(const char *, FILE *);
i nt
mai n(voi d)
{
FI LE *fp;

fputs("enter any character\n", stdout);
if (getchar() == EOF)
err_sys("getchar error");
fputs("one line to standard error\n", stderr);

pr_stdio("stdin", stdin);
pr_stdio("stdout", stdout);
pr_stdio("stderr", stderr);



if ((fp = fopen("/etc/motd", "r")) == NULL)
err_sys("fopen error");
if (getc(fp) == EOF)
err_sys("getc error");
pr_stdio("/etc/motd", fp);

exit(0);
}
voi d
pr_stdio(const char *nane, FILE *fp)
{
printf("stream= %, ", nane);
/*
* The follow ng is nonportable.
*/
if (fp->_10file_flags & _I O UNBUFFERED)
printf("unbuffered");
else if (fp->_10file flags & _| O LI NE BUF)
printf("line buffered");
else /* if neither of above */
printf("fully buffered");
printf(", buffer size = %@\n", fp-> 10 buf _end - fp->_10 buf base);
}
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5.13. Temporary Files

The ISO C standard defines two functions that are provided by the standard 1/0 library to assist in
creating temporary files.

#i ncl ude <stdi o. h>

char *tnpnan(char *ptr);

Returns: pointer to unique pathname

FILE *tnpfil e(void);

Returns: file pointer if OK, NULL on error

The t rpnamfunction generates a string that is a valid pathname and that is not the same name as an
existing file. This function generates a different pathname each time it is called, up to TMP_MAX times.
TMP_MAX is defined in <st di 0. h>.

Although ISO C defines TMP_MAX, the C standard requires only that its value be at least 25. The
Single UNIX Specification, however, requires that XSI-conforming systems support a value of at
least 10,000. Although this minimum value allows an implementation to use four digits
(00009999), most implementations on UNIX systems use lowercase or uppercase characters.

If ptr is NULL, the generated pathname is stored in a static area, and a pointer to this area is returned
as the value of the function. Subsequent calls to t npnamcan overwrite this static area. (This means
that if we call this function more than once and we want to save the pathname, we have to save a
copy of the pathname, not a copy of the pointer.) If ptr is not NULL, it is assumed that it points to an
array of at least L_t npnamcharacters. (The constant L_t npnamis defined in <st di 0. h>.) The generated
pathname is stored in this array, and ptr is also returned as the value of the function.

The t mpfi | e function creates a temporary binary file (type wb+) that is automatically removed when it

is closed or on program termination. Under the UNIX System, it makes no difference that this file is a
binary file.

Example



The program in Figure 5.12 demonstrates these two functions.

If we execute the program in Figure 5.12, we get

$ ./a.out
[tmp/fileCll cwe
[trp/ fil enBkHSe
one |ine of output

Figure 5.12. Demonstrate t npnamand t npfi | e functions

#i ncl ude "apue. h"

i nt
mai n(voi d)
{
char nane[ L_t mpnani, |ine[ MAXLI NE];
FI LE *fp;
printf("%\n", tnmpnanm NULL)); [* first tenp nane */
t npnan( nane) ; /* second tenp nane */
printf("%\n", nane);
if ((fp = tmpfile()) == NULL) [* create temp file */
err_sys("tnpfile error");
fputs("one line of output\n", fp); /* wite to tenp file */
rewi nd(fp); /* then read it back */
if (fgets(line, sizeof(line), fp) == NULL)
err_sys("fgets error");
fputs(line, stdout); /* print the line we wote */
exit(0);
}

The standard technique often used by the t npfi | e function is to create a unique pathname by calling

t npnam then create the file, and immediately unl

i nk it. Recall from Section 4.15 that unlinking a file

does not delete its contents until the file is closed. This way, when the file is closed, either explicitly

or on program termination, the contents of the file are deleted.

The Single UNIX Specification defines two additional functions as XSI extensions for dealing with
temporary files. The first of these is the t enpnamfunction.



#i

-

View full width

char *tenpnanm(const char *directory, const char

ncl ude <stdi o. h>

prefix) ;

Returns: pointer to unique pathname

The t enpnamfunction is a variation of t npnamthat allows the caller to specify both the directory and a
prefix for the generated pathname. There are four possible choices for the directory, and the first one
that is true is used.

3.

4.

If the environment variable TMPDI R is defined, it is used as the directory. (We describe
environment variables in Section 7.9.)

If directory is not NULL, it is used as the directory.
The string P_t npdi r in <stdi 0. h> is used as the directory.

A local directory, usually / t np, is used as the directory.

If the prefix argument is not NULL, it should be a string of up to five bytes to be used as the first
characters of the filename.

This function calls the mal | oc function to allocate dynamic storage for the constructed pathname. We
can free this storage when we're done with the pathname. (We describe the nal | oc and free
functions in Section 7.8.)

Example

The program in Figure 5.13 shows the use of t enpnam

Note that if either command-line argumentthe directory or the prefixbegins with a blank, we pass a
null pointer to the function. We can now show the various ways to use it:

$ ./a.out /hone/sar TEMP specify both directory and prefix

/ hore/ sar / TEMPsf 00zi

$ ./a.out " " PFX use default directory: P_t npdi r

/ t np/ PEXf BW7G

$ TMPDIR=/var/tnp ./a.out /usr/tnp " " useenvironment variable; no prefix

[var/tnp/fil e8f VYN envi ronnment variabl e overrides directory

$ TMPDI R=/ no/ such/dir ./a.out /home/sar/tnp QXQ
[ hone/ sar/ t np/ QQO8s8U invalid environment directory is ignored



As the four steps that we listed earlier for specifying the directory name are tried in order, this
function also checks whether the corresponding directory name makes sense. If the directory doesn't
exist (the / no/ such/ di r example), that case is skipped, and the next choice for the directory name is
tried. From this example, we can see that for this implementation, the P_t npdi r directory is /tnp. The
technique that we used to set the environment variable, specifying TMPDI R= before the program
name, is used by the Bourne shell, the Korn shell, and bash.

Figure 5.13. Demonstrate t enpnam function

#i ncl ude "apue. h"

i nt
mai n(int argc, char *argv[])
{
if (argc !'= 3)
err_quit("usage: a.out <directory> <prefix>");
printf("%\n", tenpnan(argv[1][O0] !=" " ? argv[1l] : NULL,
argv[2][0] !'=" " ? argv[2] : NULL));
exit(0);
}

The second function that XSI defines is nkst enp. It is similar to t npfi | e, but returns an open file
descriptor for the temporary file instead of a file pointer.

#i ncl ude <stdlib. h>

i nt nkstenp(char *template);

Returns: file descriptor if OK, 1 on error

The returned file descriptor is open for reading and writing. The name of the temporary file is
selected using the template string. This string is a pathname whose last six characters are set to
XXXXXX. The function replaces these with different characters to create a unique pathname. If nkst enp
returns success, it modifies the template string to reflect the name of the temporary file.

Unlike t npfi | e, the temporary file created by nkst enp is not removed automatically for us. If we want
to remove it from the file system namespace, we need to unlink it ourselves.



There is a drawback to using t npnamand t enpnant a window exists between the time that the unique
pathname is returned and the time that an application creates a file with that name. During this
timing window, another process can create a file of the same name. The tenpfil e and nkst enp
functions should be used instead, as they don’'t suffer from this problem.

The nkt enp function is similar to nkst enp, except that it creates a name suitable only for use as
a temporary file. The nkt enp function doesn't create a file, so it suffers from the same drawback
as t npnamand t enpnam The nkt enp function is marked as a legacy interface in the Single UNIX
Specification. Legacy interfaces might be withdrawn in future versions of the Single UNIX
Specification, and so should be avoided.
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5.14. Alternatives to Standard 1/0O

The standard 1/0 library is not perfect. Korn and Vo [1991] list numerous defects: some in the basic
design, but most in the various implementations.

One inefficiency inherent in the standard 1/0 library is the amount of data copying that takes place.
When we use the line-at-a-time functions, f gets and f put s, the data is usually copied twice: once
between the kernel and the standard 1/0 buffer (when the corresponding read or wri t e is issued) and
again between the standard 1/0 buffer and our line buffer. The Fast 1/0 library [fi 0(3) in AT&T
1990a] gets around this by having the function that reads a line return a pointer to the line instead of
copying the line into another buffer. Hume [1988] reports a threefold increase in the speed of a
version of the grep(1) utility, simply by making this change.

Korn and Vo [1991] describe another replacement for the standard 1/0 library: sfio. This package is
similar in speed to the fio library and normally faster than the standard 1/0 library. The sfio package
also provides some new features that aren't in the others: 1/0 streams generalized to represent both
files and regions of memory, processing modules that can be written and stacked on an 1/0 stream
to change the operation of a stream, and better exception handling.

Krieger, Stumm, and Unrau [1992] describe another alternative that uses mapped filesthe nmap
function that we describe in Section 14.9. This new package is called ASI, the Alloc Stream Interface.
The programming interface resembles the UNIX System memory allocation functions (nal | oc,

real l oc, and free, described in Section 7.8). As with the sfio package, ASI attempts to minimize the
amount of data copying by using pointers.

Several implementations of the standard 1/0 library are available in C libraries that were designed for
systems with small memory footprints, such as embedded systems. These implementations
emphasize modest memory requirements over portability, speed, or functionality. Two such
implementations are the uClibc C library (see http://www.uclibc.org for more information) and the
newlibc C library (http://sources.redhat.com/newlib).
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5.15. Summary

The standard 1/0 library is used by most UNIX applications. We have looked at all the functions
provided by this library, as well as at some implementation details and efficiency considerations. Be
aware of the buffering that takes place with this library, as this is the area that generates the most
problems and confusion.

=TT e rrev | nexr



=TeTe e prev | nexr o

Exercises

5.1 Implement set buf using set vbuf .

5.2 Type in the program that copies a file using line-at-a-time 1/0 (f gets and f put s) from
Section 5.8, but use a MAXLI NE of 4. What happens if you copy lines that exceed this
length? Explain what is happening.

5.3 What does a return value of O from pri ntf mean?

a1
N

The following code works correctly on some machines, but not on others. What could be
the problem?

#i ncl ude <stdi 0. h>
i nt
mai n( voi d)
{
char c;

while ((c = getchar()) != EOF)
put char(c);

5.5 Why does t enpnamrestrict the prefix to five characters?

5.6 How would you use the f sync function (Section 3.13) with a standard 1/0 stream?
5.7 In the programs in Figures 1.7 and 1.10, the prompt that is printed does not contain a

newline, and we don't call ff I ush. What causes the prompt to be output?
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Chapter 6. System Data Files and
Information

Section 6.1. Introduction

Section 6.2. Password File

Section 6.3. Shadow Passwords

Section 6.4. Group File

Section 6.5. Supplementary Group IDs

Section 6.6. Implementation Differences

Section 6.7. Other Data Files

Section 6.8. Login Accounting

Section 6.9. System ldentification

Section 6.10. Time and Date Routines

Section 6.11. Summary

Exercises
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6.1. Introduction

A UNIX system requires numerous data files for normal operation: the password file / et c/ passwd and
the group file / et c/ gr oup are two files that are frequently used by various programs. For example,
the password file is used every time a user logs in to a UNIX system and every time someone
executesan |s -1 command.

Historically, these data files have been ASCII text files and were read with the standard 1/0 library.
But for larger systems, a sequential scan through the password file becomes time consuming. We
want to be able to store these data files in a format other than ASCII text, but still provide an
interface for an application program that works with any file format. The portable interfaces to these
data files are the subject of this chapter. We also cover the system identification functions and the
time and date functions.
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6.2. Password File
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The UNIX System's password file, called the user database by POSIX.1, contains the fields shown in
Figure 6.1. These fields are contained in a passwd structure that is defined in <pwd. h>.

Figure 6.1. Fields in / et c/ passwd file

Mac
(0N}
FreeBSD | Linux X | Solaris
Description struct passwd member POSIX.1| 5.2.1 |2.4.22|10.3 9
user name char *pw_nane - - - - -

encrypted password

char *pw_passwd

numerical user ID

uid_t pwuid

numerical group ID gid_t pwgid - . . - -
comment field char *pw_gecos . - - -
initial working directory char *pw dir - - . - -
initial shell (user program) | char *pw shel | . . . . .
user access class char *pw_cl ass - -

next time to change
password

time_t pw_change

account expiration time

time_t pw expire

Note that POSIX.1 specifies only five of the ten fields in the passwd structure. Most platforms
support at least seven of the fields. The BSD-derived platforms support all ten.

Historically, the password file has been stored in / et ¢/ passwd and has been an ASCII file. Each line
contains the fields described in Figure 6.1, separated by colons. For example, four lines from the
/ et ¢/ passwd file on Linux could be

root:x:0:0:root:/root:/bin/bash
squi d: x: 23: 23::/var/ spool / squi d: / dev/ nul |
nobody: x: 65534: 65534: Nobody: / hone: / bi n/ sh




sar: x: 205: 105: St ephen Rago: / hone/ sar: / bi n/ bash

Note the following points about these entries.

There is usually an entry with the user name r oot . This entry has a user ID of O (the
superuser).

The encrypted password field contains a single character as a placeholder where older versions
of the UNIX System used to store the encrypted password. Because it is a security hole to store
the encrypted password in a file that is readable by everyone, encrypted passwords are now
kept elsewhere. We'll cover this issue in more detail in the next section when we discuss
passwords.

Some fields in a password file entry can be empty. If the encrypted password field is empty, it
usually means that the user does not have a password. (This is not recommended.) The entry
for squi d has one blank field: the comment field. An empty comment field has no effect.

The shell field contains the name of the executable program to be used as the login shell for the
user. The default value for an empty shell field is usually / bi n/ sh. Note, however, that the entry
for squi d has / dev/ nul | as the login shell. Obviously, this is a device and cannot be executed,
so its use here is to prevent anyone from logging in to our system as user squi d.

Many services have separate user IDs for the daemon processes (Chapter 13) that help
implement the service. The squi d enTRYy is for the processes implementing the squi d proxy
cache service.

There are several alternatives to using / dev/ nul | to prevent a particular user from logging in to
a system. It is common to see / bi n/ f al se used as the login shell. It simply exits with an
unsuccessful (nonzero) status; the shell evaluates the exit status as false. It is also common to
see / bi n/true used to disable an account. All it does is exit with a successful (zero) status.
Some systems provide the nol ogi n command. It prints a customizable error message and exits
with a nonzero exit status.

The nobody user name can be used to allow people to log in to a system, but with a user ID
(65534) and group ID (65534) that provide no privileges. The only files that this user ID and
group ID can access are those that are readable or writable by the world. (This assumes that
there are no files specifically owned by user ID 65534 or group ID 65534, which should be the
case.)

Some systems that provide the fi nger (1) command support additional information in the
comment field. Each of these fields is separated by a comma: the user's name, office location,
office phone number, and home phone number. Additionally, an ampersand in the comment
field is replaced with the login name (capitalized) by some utilities. For example, we could have

sar: x: 205: 105: Steve Rago, SF 5-121, 555-1111, 555-2222:/hone/sar:/bin/sh

Then we could use fi nger to print information about Steve Rago.



$ finger -p sar

Logi n: sar Nane: Steve Rago
Directory: /hone/sar Shel | : /bin/sh

Ofice: SF 5-121, 555-1111 Honme Phone: 555-2222
On since Mon Jan 19 03:57 (EST) on ttyvO (nmessages off)
No Mail .

Even if your system doesn't support the fi nger command, these fields can still go into the
comment field, since that field is simply a comment and not interpreted by system utilities.

Some systems provide the vi pw command to allow administrators to edit the password file. The vi pw
command serializes changes to the password file and makes sure that any additional files are
consistent with the changes made. It is also common for systems to provide similar functionality
through graphical user interfaces.

POSIX.1 defines only two functions to fetch entries from the password file. These functions allow us
to look up an entry given a user's login name or numerical user ID.

#i ncl ude <pwd. h>
struct passwd *getpwuid(uid t uid);

struct passwd *get pwnan{const char *name);

Both return: pointer if OK, NULL on error

The get pwui d function is used by the | s(1) program to map the numerical user ID contained in an i-
node into a user's login name. The get pwnamfunction is used by the | ogi n(1) program when we enter
our login name.

Both functions return a pointer to a passwd structure that the functions fill in. This structure is usually
a stati ¢ variable within the function, so its contents are overwritten each time we call either of these
functions.

These two POSIX.1 functions are fine if we want to look up either a login name or a user ID, but
some programs need to go through the entire password file. The following three functions can be
used for this.



#i ncl ude <pwd. h>

struct passwd *getpwent (void);

Returns: pointer if OK, NULL on error or end of file

voi d set pwent (void);

voi d endpwent (voi d);

These three functions are not part of the base POSIX.1 standard. They are defined as XSI
extensions in the Single UNIX Specification. As such, all UNIX systems are expected to provide
them.

We call get pwent to return the next entry in the password file. As with the two POSIX.1 functions,
get pwent returns a pointer to a structure that it has filled in. This structure is normally overwritten
each time we call this function. If this is the first call to this function, it opens whatever files it uses.
There is no order implied when we use this function; the entries can be in any order, because some
systems use a hashed version of the file / et ¢/ passwd.

The function set pwent rewinds whatever files it uses, and endpwent closes these files. When using
get pwent , we must always be sure to close these files by calling endpwent when we're through.
Although get pwent is smart enough to know when it has to open its files (the first time we call it), it
never knows when we're through.

Example

Figure 6.2 shows an implementation of the function get pwnam

The call to set pwent at the beginning is self-defense: we ensure that the files are rewound, in case
the caller has already opened them by calling get pwent . The call to endpwent when we're done is
because neither get pwnam nor get pwi d should leave any of the files open.

Figure 6.2. The get pwnamfunction

#i ncl ude <pwd. h>
#i ncl ude <stddef. h>
#i nclude <string. h>



struct passwd *
get pwnam(const char *nane)

{

struct passwd *ptr;

set pwent () ;

while ((ptr = getpwent()) !'= NULL)

if (strcnp(nanme, ptr->pw _nane) == 0)
br eak; /* found a match */

endpwent () ;

return(ptr); /*a ptr is NULL if no match found */
}
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6.3. Shadow Passwords

The encrypted password is a copy of the user's password that has been put through a one-way
encryption algorithm. Because this algorithm is one-way, we can't guess the original password from
the encrypted version.

Historically, the algorithm that was used (see Morris and Thompson [1979]) always generated 13
printable characters from the 64-character set [ a- zA- Z0- 9. /] . Some newer systems use an MD5
algorithm to encrypt passwords, generating 31 characters per encrypted password. (The more
characters used to store the encrypted password, the more combinations there are, and the harder it
will be to guess the password by trying all possible variations.) When we place a single character in
the encrypted password field, we ensure that an encrypted password will never match this value.

Given an encrypted password, we can't apply an algorithm that inverts it and returns the plaintext
password. (The plaintext password is what we enter at the Password: prompt.) But we could guess a
password, run it through the one-way algorithm, and compare the result to the encrypted password.
If user passwords were randomly chosen, this brute-force approach wouldn't be too successful.
Users, however, tend to choose nonrandom passwords, such as spouse's name, street names, or pet
names. A common experiment is for someone to obtain a copy of the password file and try guessing
the passwords. (Chapter 4 of Garfinkel et al. [2003] contains additional details and history on
passwords and the password encryption scheme used on UNIX systems.)

To make it more difficult to obtain the raw materials (the encrypted passwords), systems now store
the encrypted password in another file, often called the shadow password file. Minimally, this file has
to contain the user name and the encrypted password. Other information relating to the password is
also stored here (Eigure 6.3).

Figure 6.3. Fields in / et c/ shadow file

Description struct spwd member
user login name char *sp_nanp
encrypted password char *sp_pwdp
days since Epoch of last password int sp_|Istchg
change
days until change allowed int sp_mn
days before change required int sp_max
days warning for expiration int sp_warn
days before account inactive int sp_inact




Description

struct spwd member

expires

days since Epoch when account

int sp_expire.

reserved

unsi gned int sp_flag

The only two mandatory fields are the user's login name and encrypted password. The other fields
control how often the password is to changeknown as "password aging"and how long an account is
allowed to remain active.

The shadow password file should not be readable by the world. Only a few programs need to access
encrypted passwordsl ogi n(1) and passwd(1), for exampleand these programs are often set-user-1D
root. With shadow passwords, the regular password file, / et ¢/ passwd, can be left readable by the

world.

On Linux 2.4.22 and Solaris 9, a separate set of functions is available to access the shadow password

file, similar to the set of functions used to access the password file.

#i ncl ude <shadow. h>
struct spwd *getspnan{const char *name);

struct spwd *getspent(void);

Both return: pointer if OK, NULL on error

voi d setspent(void);

voi d endspent (void);

On FreeBSD 5.2.1 and Mac OS X 10.3, there is no shadow password structure. The additional account

information is stored in the password file (refer back to Fiaure 6.1).
EEL
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The UNIX System's group file, called the group database by POSIX.1, contains the fields shown in
Figure 6.4. These fields are contained in a gr oup structure that is defined in <gr p. h>.

Figure 6.4. Fields in /et c/ group file

Description

struct group member

POSIX.1

FreeBSD
52.1

Linux
2.4.22

Mac
OS X
10.3

Solaris
9

group name

char *gr_nane

encrypted password

char *gr_passwd

numerical group ID

int gr_gid

array of pointers to
individual user names

char **gr_nmem

The field gr _nmemis an array of pointers to the user names that belong to this group. This array is
terminated by a null pointer.

We can look up either a group name or a numerical group ID with the following two functions, which

are defined by POSIX.1.

#i ncl ude <grp. h>

struct group *getgrgid(gid_t gid);

struct group *getgrnan(const char *name);

Both return: pointer if OK, NULL on error

As with the password file functions, both of these functions normally return pointers to a static
variable, which is overwritten on each call.




If we want to search the entire group file, we need some additional functions. The following three
functions are like their counterparts for the password file.

#i ncl ude <grp. h>

struct group *getgrent(void);

Returns: pointer if OK, NULL on error or end of file

void setgrent(void);

voi d endgrent (void);

These three functions are not part of the base POSIX.1 standard. They are defined as XSI
extensions in the Single UNIX Specification. All UNIX Systems provide them.

The set grent function opens the group file, if it's not already open, and rewinds it. The get gr ent
function reads the next entry from the group file, opening the file first, if it's not already open. The
endgr ent function closes the group file.
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6.5. Supplementary Group IDs

The use of groups in the UNIX System has changed over time. With Version 7, each user belonged to
a single group at any point in time. When we logged in, we were assigned the real group ID
corresponding to the numerical group ID in our password file entry. We could change this at any
point by executing newgr p(1). If the newgr p command succeeded (refer to the manual page for the
permission rules), our real group ID was changed to the new group's ID, and this was used for all
subsequent file access permission checks. We could always go back to our original group by
executing newgr p without any arguments.

This form of group membership persisted until it was changed in 4.2BSD (circa 1983). With 4.2BSD,
the concept of supplementary group IDs was introduced. Not only did we belong to the group
corresponding to the group ID in our password file entry, but we also could belong to up to 16
additional groups. The file access permission checks were modified so that not only was the effective
group ID compared to the file's group ID, but also all the supplementary group IDs were compared to
the file's group ID.

Supplementary group IDs are a required feature of POSIX.1. (In older versions of POSIX.1, they
were optional.) The constant NGROUPS_MAX (Eigure 2.10) specifies the number of supplementary
group IDs. A common value is 16 (Figure 2.14).

The advantage in using supplementary group IDs is that we no longer have to change groups
explicitly. It is not uncommon to belong to multiple groups (i.e., participate in multiple projects) at
the same time.

Three functions are provided to fetch and set the supplementary group IDs.

#i ncl ude <uni std. h>

int getgroups(int gidsetsize, gid_t grouplist[]);

Returns: number of supplementary group IDs if OK, 1 on error

View full width

#i ncl ude <grp. h> /* on Linux */

#i ncl ude <unistd.h> /* on FreeBSD, Mac OGS X, and
=olaris */

int setgroups(int ngroups, const gid_t grouplistf]);

#i ncl ude <grp. h> /* on Linux and Solaris */



#i ncl ude <unistd.h> /* on FreeBSD and Mac OS X */

int initgroups(const char *username, gid_t basegid);

Both return: O if OK, 1 on error

Of these three functions, only get gr oups is specified by POSIX.1. Because set gr oups and
i ni t groups are privileged operations, they are not part of POSIX.1. All four platforms covered in
this book, however, support all three functions.

On Mac OS X 10.3, basegid is declared to be of type i nt .

The get gr oups function fills in the array grouplist with the supplementary group IDs. Up to gidsetsize
elements are stored in the array. The number of supplementary group IDs stored in the array is
returned by the function.

As a special case, if gidsetsize is 0, the function returns only the number of supplementary group IDs.
The array grouplist is not modified. (This allows the caller to determine the size of the grouplist array
to allocate.)

The set groups function can be called by the superuser to set the supplementary group ID list for the
calling process: grouplist contains the array of group IDs, and ngroups specifies the number of
elements in the array. The value of ngroups cannot be larger than NGROUPS_NMAX.

The only use of set gr oups is usually from the i ni t gr oups function, which reads the entire group
filewith the functions get grent , set grent, and endgr ent , which we described earlierand determines
the group membership for username. It then calls set gr oups to initialize the supplementary group 1D
list for the user. One must be superuser to call i ni t gr oups, since it calls set gr oups. In addition to
finding all the groups that username is a member of in the group file, i ni t gr oups also includes
basegid in the supplementary group ID list; basegid is the group ID from the password file for
username.

The i ni t groups function is called by only a few programs: the | ogi n(1) program, for example, calls it
when we log in.
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6.6. Implementation Differences

We've already discussed the shadow password file supported by Linux and Solaris. FreeBSD and Mac
OS X store encrypted passwords differently. Figure 6.5 summarizes how the four platforms covered
in this book store user and group information.

Figure 6.5. Account implementation differences

FreeBSD Linux Mac OS X Solaris
Information 521 2.4.22 10.3 9

Account / et c/ passwd / et c/ passwd netinfo / et c/ passwd
information
Encrypted /etc/ master. passwd | / et ¢/ shadow netinfo / et c/ shadow
passwords
Hashed password | yes no no no
files?
Group information | /etc/ group / etc/ group netinfo / etc/ group

On FreeBSD, the shadow password file is / et ¢/ mast er . passwd. Special commands are used to edit it,
which in turn generate a copy of / et ¢/ passwd from the shadow password file. In addition, hashed
versions of the files are also generated: / et ¢/ pwd. db is the hashed version of / et ¢/ passwd, and

/ et c/ spwd. db is the hashed version of / et c/ mast er . passwd. These provide better performance for
large installations.

On Mac OS X, however, / et c/ passwd and / et ¢/ mast er . passwd are used only in single-user mode
(when the system is undergoing maintenance; single-user mode usually means that no system
services are enabled). In multiuser modeduring normal operationthe net i nf o directory service
provides access to account information for users and groups.

Although Linux and Solaris support similar shadow password interfaces, there are some subtle
differences. For example, the integer fields shown in Figure 6.3 are defined as type i nt on Solaris,
but as | ong i nt on Linux. Another difference is the account-inactive field. Solaris defines it to be the
number of days since the user last logged in to the system, whereas Linux defines it to be the
number of days after which the maximum password age has been reached.

On many systems, the user and group databases are implemented using the Network Information

Service (NIS). This allows administrators to edit a master copy of the databases and distribute them
automatically to all servers in an organization. Client systems contact servers to look up information
about users and groups. NIS+ and the Lightweight Directory Access Protocol (LDAP) provide similar
functionality. Many systems control the method used to administer each type of information through



the / et c/ nsswi t ch. conf configuration file.
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6.7. Other Data Files

We've discussed only two of the system's data files so far: the password file and the group file.
Numerous other files are used by UNIX systems in normal day-to-day operation. For example, the
BSD networking software has one data file for the services provided by the various network servers
(/ et c/ servi ces), one for the protocols (/ et c/ pr ot ocol s), and one for the networks (/ et c/ net wor ks).
Fortunately, the interfaces to these various files are like the ones we've already described for the
password and group files.

The general principle is that every data file has at least three functions:

1. A get function that reads the next record, opening the file if necessary. These functions
normally return a pointer to a structure. A null pointer is returned when the end of file is
reached. Most of the get functions return a pointer to a st ati ¢ structure, so we always have to
copy it if we want to save it.

2. Aset function that opens the file, if not already open, and rewinds the file. This function is used
when we know we want to start again at the beginning of the file.

3. An end enTRy that closes the data file. As we mentioned earlier, we always have to call this
when we're done, to close all the files.

Additionally, if the data file supports some form of keyed lookup, routines are provided to search for
a record with a specific key. For example, two keyed lookup routines are provided for the password
file: get pwnamlooks for a record with a specific user name, and get pwi d looks for a record with a
specific user ID.

Figure 6.6 shows some of these routines, which are common to UNIX systems. In this figure, we
show the functions for the password files and group file, which we discussed earlier in this chapter,
and some of the networking functions. There are get , set , and end functions for all the data files in
this figure.

Figure 6.6. Similar routines for accessing system data files

Additional keyed lookup
Description Data file Header Structure functions
passwords / et c/ passwd <pwd. h> passwd get pwnam, get pwui d
groups letc/ group <grp. h> group get gr nam, get gr gi d
shadow / et c/ shadow <shadow. h> spwd get spnam




Additional keyed lookup

Description Data file Header Structure functions
hosts / etc/ hosts <net db. h> host ent get host bynane,
get host byaddr
networks /etc/ networks | <netdb. h> net ent get net bynane,
get net byaddr
protocols / etcl/ protocol s | <netdb. h> pr ot oent get pr ot obynane,
get pr ot obynunber
services letclservices |<netdb.h> servent get servbynane,

get servbyport

Under Solaris, the last four data files in Figure 6.6 are symbolic links to files of the same name
in the directory / et c/ i net . Most UNIX System implementations have additional functions that

are like these, but the additional functions tend to deal with system administration files and are
specific to each implementation.
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6.8. Login Accounting

Two data files that have been provided with most UNIX systems are the ut np file, which keeps track
of all the users currently logged in, and the wt np file, which keeps track of all logins and logouts. With
Version 7, one type of record was written to both files, a binary record consisting of the following
structure:

struct utnmp {

char ut _line[8]; /* tty line: "ttyhO", "ttydO", "ttypO", ... */
char ut_name[8]; /* login nane */
long ut_tinme; /* seconds since Epoch */

b

On login, one of these structures was filled in and written to the ut np file by the | ogi n program, and
the same structure was appended to the wt np file. On logout, the entry in the ut np file was
erasedfilled with null bytesby the i nit process, and a new entry was appended to the wt np file. This
logout entry in the wt np file had the ut _nane field zeroed out. Special entries were appended to the
wt np file to indicate when the system was rebooted and right before and after the system's time and
date was changed. The who(1) program read the ut np file and printed its contents in a readable form.
Later versions of the UNIX System provided the | ast (1) command, which read through the wt np file
and printed selected entries.

Most versions of the UNIX System still provide the ut np and wt np files, but as expected, the amount
of information in these files has grown. The 20-byte structure that was written by Version 7 grew to
36 bytes with SVR2, and the extended ut np structure with SVR4 takes over 350 bytes!

The detailed format of these records in Solaris is given in the ut npx(4) manual page. With
Solaris 9, both files are in the / var/ admdirectory. Solaris provides numerous functions described
in get ut x(3) to read and write these two files.

On FreeBSD 5.2.1, Linux 2.4.22, and Mac OS X 10.3, the ut np(5) manual page gives the format
of their versions of these login records. The pathnames of these two files are /var/ run/ ut np and
/var/ | og/wtnp.
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6.9. System Identification

POSIX.1 defines the unane function to return information on the current host and operating system.

#i ncl ude <sys/ utsname. h>

int uname(struct utsnanme *name);

Returns: non-negative value if OK, 1 on error

We pass the address of a ut snane structure, and the function fills it in. POSIX.1 defines only the
minimum fields in the structure, which are all character arrays, and it's up to each implementation to
set the size of each array. Some implementations provide additional fields in the structure.

struct
char
char
char
char
char

ut snane {
sysnane[];
nodenane[ ] ;
rel ease[];
version[];
machi ne[];

/*
/*
/*
/*
/*

nane of
nane of
current
current
nane of

the operating system */

this node */

rel ease of operating system */
version of this release */

har dware type */

Each string is null-terminated. The maximum name lengths supported by the four platforms
discussed in this book are listed in Figure 6.7. The information in the ut snane structure can usually be
printed with the unanme(1) command.

POSIX.1 warns that the nodenane element may not be adequate to reference the host on a
communications network. This function is from System V, and in older days, the nodenane
element was adequate for referencing the host on a UUCP network.

Realize also that the information in this structure does not give any information on the POSIX.1
level. This should be obtained using _PGCsI X_VERSI ON, as described in Section 2.6.

Finally, this function gives us a way only to fetch the information in the structure; there is
nothing specified by POSIX.1 about initializing this information.

Historically, BSD-derived systems provide the get host nane function to return only the name of the
host. This name is usually the name of the host on a TCP/IP network.



#i ncl ude <uni std. h>

i nt get hostnane(char *name, int namelen);

Returns: O if OK, 1 on error

The namelen argument specifies the size of the name buffer. If enough space is provided, the string
returned through name is null terminated. If insufficient room is provided, however, it is unspecified
whether the string is null terminated.

The get host nane function, now defined as part of POSIX.1, specifies that the maximum host name
length is HOST_NAME MAX. The maximum name lengths supported by the four implementations covered
in this book are summarized in Figure 6.7.

Figure 6.7. System identification name limits

Interface Maximum name length
FreeBSD Mac OS X
5.2.1 Linux 2.4.22 10.3 Solaris 9
unane 256 65 256 257
get host nane 256 64 256 256

If the host is connected to a TCP/IP network, the host name is normally the fully qualified domain
name of the host.

There is also a host name (1) command that can fetch or set the host name. (The host name is set by
the superuser using a similar function, set host nane.) The host name is normally set at bootstrap time
from one of the start-up files invoked by /etc/rcorinit.
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6.10. Time and Date Routines

The basic time service provided by the UNIX kernel counts the number of seconds that have passed
since the Epoch: 00:00:00 January 1, 1970, Coordinated Universal Time (UTC). In Section 1.10, we
said that these seconds are represented in ati ne_t data type, and we call them calendar times.
These calendar times represent both the time and the date. The UNIX System has always differed
from other operating systems in (a) keeping time in UTC instead of the local time, (b) automatically
handling conversions, such as daylight saving time, and (c) keeping the time and date as a single
quantity.

The ti me function returns the current time and date.

#i ncl ude <tine. h>

time_t tine(tine_t *calptr);

Returns: value of time if OK, 1 on error

The time value is always returned as the value of the function. If the argument is non- null, the time
value is also stored at the location pointed to by calptr.

We haven't said how the kernel's notion of the current time is initialized. Historically, on
implementations derived from System V, the sti me(2) function was called, whereas BSD-
derived systems used set ti neof day(2).

The Single UNIX Specification doesn't specify how a system sets its current time.

The getti meof day function provides greater resolution (up to a microsecond) than the ti me function.
This is important for some applications.



View full width

#i ncl ude <sys/tine. h>

int gettineofday(struct tinmeval *restrict tp, void
®™restrict tz);

Returns: O always

This function is defined as an XSI extension in the Single UNIX Specification. The only legal value for
tzp is NULL; other values result in unspecified behavior. Some platforms support the specification of a

time zone through the use of tzp, but this is implementation-specific and not defined by the Single
UNIX Specification.

The get ti neof day function stores the current time as measured from the Epoch in the memory

pointed to by tp. This time is represented as a ti neval structure, which stores seconds and
microseconds:

struct tinmeval ({
tinme_t tv_sec; /* seconds */
| ong tv_usec; /* mcroseconds */

b

Once we have the integer value that counts the number of seconds since the Epoch, we normally call

one of the other time functions to convert it to a human-readable time and date. Figure 6.8 shows
the relationships between the various time functions.

Figure 6.8. Relationship of the various time functions
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localtime
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kernel

(The four functions in this figure that are shown with dashed linesl ocal ti ne, nkti ne, cti nme, and
strftimeare all affected by the TZ environment variable, which we describe later in this section.)

The two functions | ocal ti ne and gnti me convert a calendar time into what's called a broken-down
time, a t mstructure.

struct tm{

1 nt
i nt
i nt
i nt
i nt
i nt
i nt
i nt
i nt

t m sec;
tmmn;
tm_hour;
t m nday;
t m_nmon;
tmyear;
t m wday;
t m yday;
tm.isdst;

/* a broken-down time */

/* seconds after the mnute: [0 - 60] */
/* mnutes after the hour: [0 - 59] */

/* hours after mdnight: [0 - 23] */

[* day of the nonth: [1 - 31] */

/* nmonths since January: [0 - 11] */

/* years since 1900 */

/* days since Sunday: [0 - 6] */

/* days since January 1: [0 - 365] */

/* daylight saving tine flag: <0, 0, >0 */

The reason that the seconds can be greater than 59 is to allow for a leap second. Note that all the
fields except the day of the month are O-based. The daylight saving time flag is positive if daylight
saving time is in effect, O if it's not in effect, and negative if the information isn't available.

In previous versions of the Single UNIX Specification, double leap seconds were allowed. Thus,
the valid range of values for the t m sec member was 061. The formal definition of UTC doesn't
allow for double leap seconds, so the valid range for seconds is now defined to be 060.



#i ncl ude <tine. h>
struct tm*gntine(const tinme_t *calptr);

struct tm*localtine(const tine_ t *calptr);

Both return: pointer to broken-down time

The difference between | ocal ti me and gnti ne is that the first converts the calendar time to the local
time, taking into account the local time zone and daylight saving time flag, whereas the latter
converts the calendar time into a broken-down time expressed as UTC.

The function nkt i me takes a broken-down time, expressed as a local time, and converts it into a
time_t value.

#i ncl ude <tine. h>

time_t nktinme(struct tm *tmptr);

Returns: calendar time if OK, 1 on error

The ascti ne and cti me functions produce the familiar 26-byte string that is similar to the default
output of the dat e(1) command:

Tue Feb 10 18:27:38 2004\ n\0



#i ncl ude <tine. h>
char *asctine(const struct tm *tmptr);

char *ctime(const tine_t *calptr);

Both return: pointer to null-terminated string

The argument to ascti ne is a pointer to a broken-down string, whereas the argument to cti ne is a
pointer to a calendar time.

The final time function, strfti ne, is the most complicated. It is a pri nt f -like function for time values.

#i ncl ude <tine. h>

size_t strftime(char *restrict buf, size_t maxsize
const char *restrict format,
const struct tm*restrict tmptr);

Returns: number of characters stored in array if room, O otherwise

The final argument is the time value to format, specified by a pointer to a broken-down time value.
The formatted result is stored in the array buf whose size is maxsize characters. If the size of the
result, including the terminating null, fits in the buffer, the function returns the number of characters
stored in buf, excluding the terminating null. Otherwise, the function returns O.

The format argument controls the formatting of the time value. Like the pri ntf functions, conversion
specifiers are given as a percent followed by a special character. All other characters in the format

string are copied to the output. Two percents in a row generate a single percent in the output. Unlike
the pri ntf functions, each conversion specified generates a different fixed-size output stringthere are
no field widths in the format string. Figure 6.9 describes the 37 ISO C conversion specifiers. The third

column of this figure is from the output of strfti me under Linux, corresponding to the time and date
Tue Feb 10 18:27:38 EST 2004.

Figure 6.9. Conversion specifiers for strftime



Format Description Example
Y@ abbreviated weekday name Tue
YA full weekday name Tuesday
% abbreviated month name Feb
9B full month name February
% date and time Tue Feb 10 18:27:38 2004
uC year/100: [0099] 20
% day of the month: [0131] 10
9w date [MM/DD/YY] 02/ 10/ 04
%e day of month (single digit preceded by 10
space) [131]
% ISO 8601 date format [YYYYMMDD] 2004-02- 10
% last two digits of ISO 8601 week-based 04
year [0099]
% 1SO 8601 week-based year 2004
% same as %b Feb
% hour of the day (24-hour format): [0023] 18
% hour of the day (12-hour format): [0112] 06
% day of the year: [001366] 041
%m month: [0112] 02
%V minute: [0059] 27
% newline character
% AM/PM PM
% locale's time (12-hour format) 06:27:38 PM
7R same as "%H:%M" 18: 27
%6 second: [0060] 38
% horizontal tab character
o same as "%H:%M:%S" 18:27: 38
% 1SO 8601 weekday [Monday=1, 17] 2
%J Sunday week number: [0053] 06




Format Description Example
%/ 1SO 8601 week number: [0153] 07
%v weekday: [0=Sunday, 06] 2
oW Monday week number: [0053] 06
9 date 02/ 10/ 04
%X time 18: 27: 38
% last two digits of year: [0099] 04
%W | year 2004
Y% offset from UTC in ISO 8601 format - 0500
L4 time zone name EST
%% translates to a percent sign %

The only specifiers that are not self-evident are %J, %/, and YW The %J specifier represents the week
number of the year, where the week containing the first Sunday is week 1. The %specifier
represents the week number of the year, where the week containing the first Monday is week 1. The
%/ specifier is different. If the week containing the first day in January has four or more days in the
new year, then this is treated as week 1. Otherwise, it is treated as the last week of the previous
year. In both cases, Monday is treated as the first day of the week.

As with printf, strftime supports modifiers for some of the conversion specifiers. The E and O
modifiers can be used to generate an alternate format if supported by the locale.

Some systems support additional, nonstandard extensions to the format string for strftine.

We mentioned that the four functions in Figure 6.8 with dashed lines were affected by the Tz
environmentvariable: | ocal ti me, nktime, ctime, and strftinme. If defined, the value of this
environment variable is used by these functions instead of the default time zone. If the variable is
defined to be a null string, such as TZ=, then UTC is normally used. The value of this environment
variable is often something like TZ=EST5EDT, but POSIX.1 allows a much more detailed specification.
Refer to the Environment Variables chapter of the Single UNIX Specification [Open Group 2004] for
all the details on the Tz variable.

All the time and date functions described in this section, except get ti neof day, are defined by
the ISO C standard. POSIX.1, however, added the TZ environment variable. On FreeBSD 5.2.1,
Linux 2.4.22, and Mac OS X 10.3, more information on the TZ variable can be found in the

t zset (3) manual page. On Solaris 9, this information is in the envi r on(5) manual page.
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6.11. Summary

The password file and the group file are used on all UNIX systems. We've looked at the various
functions that read these files. We've also talked about shadow passwords, which can help system
security. Supplementary group IDs provide a way to participate in multiple groups at the same time.
We also looked at how similar functions are provided by most systems to access other system-related
data files. We discussed the POSIX.1 functions that programs can use to identify the system on which
they are running. We finished the chapter with a look at the time and date functions provided by ISO
C and the Single UNIX Specification.
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Exercises

6.1 If the system uses a shadow file and we need to obtain the encrypted password, how do
we do it?

6.2 If you have superuser access and your system uses shadow passwords, implement the
previous exercise.

6.3 Write a program that calls unane and prints all the fields in the ut snane structure.
Compare the output to the output from the uname(1) command.

6.4 Calculate the latest time that can be represented by the ti me_t data type. After it wraps
around, what happens?

6.5 Write a program to obtain the current time and print it using strfti ne, so that it looks

like the default output from dat e(1). Set the TZ environment variable to different values
and see what happens.
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Chapter 7. Process Environment
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7.1. Introduction

Before looking at the process control primitives in the next chapter, we need to examine the
environment of a single process. In this chapter, we'll see how the mai n function is called when the
program is executed, how command-line arguments are passed to the new program, what the typical
memory layout looks like, how to allocate additional memory, how the process can use environment
variables, and various ways for the process to terminate. Additionally, we'll look at the | ongj np and
setj np functions and their interaction with the stack. We finish the chapter by examining the resource
limits of a process.
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7.2. mai n Function

A C program starts execution with a function called mai n. The prototype for the mai n function is

int main(int argc, char *argv[]);

where argc is the number of command-line arguments, and argv is an array of pointers to the
arguments. We describe these arguments in Section 7.4.

When a C program is executed by the kernelby one of the exec functions, which we describe in
Section 8.10a special start-up routine is called before the nai n function is called. The executable
program file specifies this routine as the starting address for the program; this is set up by the link
editor when it is invoked by the C compiler. This start-up routine takes values from the kernelthe
command-line arguments and the environmentand sets things up so that the mai n function is called
as shown earlier.
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7.3. Process Termination

There are eight ways for a process to terminate. Normal termination occurs in five ways:

1. Return from main

2. Calling exi t

3. Calling _exit or Exit

4. Return of the last thread from its start routine (Section 11.5)
5. Calling pt hread_exit (Section 11.5) from the last thread

Abnormal termination occurs in three ways:

6. Calling abort (Section 10.17)

7. Receipt of a signal (Section 10.2)

8. Response of the last thread to a cancellation request (Sections 11.5 and 12.7)

For now, we'll ignore the three termination methods specific to threads until we discuss
threads in Chapters 11 and 12.

The start-up routine that we mentioned in the previous section is also written so that if the nai n
function returns, the exi t function is called. If the start-up routine were coded in C (it is often coded
in assembler) the call to nai n could look like

exit(main(argc, argv));

Exit Functions

Three functions terminate a program normally: _exit and _Exi t, which return to the kernel
immediately, and exi t , which performs certain cleanup processing and then returns to the kernel.



#i ncl ude <stdlib. h>
void exit(int status);
void Exit(int status);
#i ncl ude <unistd. h>

void _exit(int status);

We'll discuss the effect of these three functions on other processes, such as the children and the
parent of the terminating process, in Section 8.5.

The reason for the different headers is that exit and _Exit are specified by ISO C, whereas
_exit is specified by POSIX.1.

Historically, the exi t function has always performed a clean shutdown of the standard 1/0 library: the
f cl ose function is called for all open streams. Recall from Section 5.5 that this causes all buffered
output data to be flushed (written to the file).

All three exit functions expect a single integer argument, which we call the exit status. Most UNIX
System shells provide a way to examine the exit status of a process. If (a) any of these functions is
called without an exit status, (b) mai n does a r et ur n without a return value, or (c) the mai n function
is not declared to return an integer, the exit status of the process is undefined. However, if the return
type of mai n is an integer and mai n "falls off the end" (an implicit return), the exit status of the
process is 0.

This behavior is new with the 1999 version of the 1SO C standard. Historically, the exit status
was undefined if the end of the mai n function was reached without an explicit r et ur n statement
or call to the exi t function.

Returning an integer value from the nai n function is equivalent to calling exi t with the same value.
Thus

exit(0);

is the same as

return(0);

from the mai n function.



Example

The program in Figure 7.1 is the classic "hello, world" example.
When we compile and run the program in Figure 7.1, we see that the exit code is random. If we

compile the same program on different systems, we are likely to get different exit codes, depending
on the contents of the stack and register contents at the time that the mai n function returns:

$ cc hello.c

$ ./a.out

hello, world

$ echo $7? print the exit status
13

Now if we enable the 1999 ISO C compiler extensions, we see that the exit code changes:

$ cc -std=c99 hello.c enable gcc's 1999 1O C extensions

hello.c:4: warning: return type defaults to "int'

$ ./a.out

hello, world

$ echo $? role="italicAlt"print the exit status
0

Note the compiler warning when we enable the 1999 ISO C extensions. This warning is printed
because the type of the mai n function is not explicitly declared to be an integer. If we were to
add this declaration, the message would go away. However, if we were to enable all
recommended warnings from the compiler (with the - wval | flag), then we would see a warning
message something like "control reaches end of nonvoid function.”

The declaration of mai n as returning an integer and the use of exit instead of r et ur n produces
needless warnings from some compilers and the | i nt (1) program. The problem is that these
compilers don't know that an exit from mai n is the same as a ret urn. One way around these
warnings, which become annoying after a while, is to use ret ur n instead of exit from mai n. But
doing this prevents us from using the UNIX System's gr ep utility to locate all calls to exi t from
a program. Another solution is to declare nai n as returning voi d, instead of i nt , and continue
calling exi t . This gets rid of the compiler warning but doesn't look right (especially in a
programming text), and can generate other compiler warnings, since the return type of mai n is
supposed to be a signed integer. In this text, we show mai n as returning an integer, since that is
the definition specified by both ISO C and POSIX.1.

Different compilers vary in the verbosity of their warnings. Note that the GNU C compiler usually
doesn't emit these extraneous compiler warnings unless additional warning options are used.



Figure 7.1. Classic C program

#i ncl ude <stdi o. h>

mai n()

{
}

printf("hello, world\n");

In the next chapter, we'll see how any process can cause a program to be executed, wait for the
process to complete, and then fetch its exit status.

at exi t Function

With ISO C, a process can register up to 32 functions that are automatically called by exi t . These are
called exit handlers and are registered by calling the at exi t function.

#i ncl ude <stdlib. h>

int atexit(void (*func)(void));

Returns: O if OK, nonzero on error

This declaration says that we pass the address of a function as the argument to at exi t . When this
function is called, it is not passed any arguments and is not expected to return a value. The exi t
function calls these functions in reverse order of their registration. Each function is called as many
times as it was registered.

These exit handlers first appeared in the ANSI C Standard in 1989. Systems that predate ANSI
C, such as SVR3 and 4.3BSD, did not provide these exit handlers.

ISO C requires that systems support at least 32 exit handlers. The sysconf function can be used
to determine the maximum number of exit handlers supported by a given platform (see Figure

2.14).

With ISO C and POSIX.1, exit first calls the exit handlers and then closes (via f cl ose) all open
streams. POSIX.1 extends the I1SO C standard by specifying that any exit handlers installed will be
cleared if the program calls any of the exec family of functions. Figure 7.2 summarizes how a C
program is started and the various ways it can terminate.



Figure 7.2. How a C program is started and how it terminates
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Note that the only way a program is executed by the kernel is when one of the exec functions is
called. The only way a process voluntarily terminates is when _exit or _Exit is called, either explicitly
or implicitly (by calling exi t). A process can also be involuntarily terminated by a signal (not shown in

Figure 7.2).

Example

The program in Figure 7.3 demonstrates the use of the at exi t function.

Executing the program in Figure 7.3 yields

$ ./a.out

main i s done

first exit handler
first exit handler
second exit handl er



An exit handler is called once for each time it is registered. In Figure 7.3, the first exit handler is
registered twice, so it is called two times. Note that we don't call exi t ; instead, we return from mai n.

Figure 7.3. Example of exit handlers
#i ncl ude "apue. h"

static void ny_exitl(void);
static void ny_exit2(void);

i nt
mai n(voi d)
{
if (atexit(ny_exit2) !'=0)
err_sys("can't register ny_exit2");
if (atexit(my_exitl) !'= 0)
err_sys("can't register nmy_exitl");
if (atexit(ny_exitl) !'= 0)
err_sys("can't register ny_exitl");
printf("main is done\n");
return(0);
}

static void
ny_exit1(void)
{

}

printf("first exit handler\n");

static void
ny_exit2(void)
{

}

printf("second exit handler\n");
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7.4. Command-Line Arguments

When a program is executed, the process that does the exec can pass command-line arguments to
the new program. This is part of the normal operation of the UNIX system shells. We have already
seen this in many of the examples from earlier chapters.

Example

The program in Figure 7.4 echoes all its command-line arguments to standard output. Note that the
normal echo(1) program doesn't echo the zeroth argument.

If we compile this program and name the executable echoar g, we have

$ ./echoarg argl TEST foo
argv[0]: ./echoarg
argv[1]: argl

argv[2]: TEST

argv[3]: foo

We are guaranteed by both ISO C and POSIX.1 that argv[ argc] is a null pointer. This lets us
alternatively code the argument-processing loop as

for (i = 0; argv[i] !'= NULL; i++)

Figure 7.4. Echo all command-line arguments to standard output

#i ncl ude "apue. h"

i nt
mai n(int argc, char *argv[])
{ . .
i nt i;
for (i =0; i < argc; i++) /* echo all command-1ine args */
printf("argv[%]: %\n", i, argv[i]);
exit(0);
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7.5. Environment List

Each program is also passed an environment list. Like the argument list, the environment list is an
array of character pointers, with each pointer containing the address of a null-terminated C string.
The address of the array of pointers is contained in the global variable envi ron:

extern char **environ;

For example, if the environment consisted of five strings, it could look like Figure 7.5. Here we
explicitly show the null bytes at the end of each string. We'll call envi r on the environment pointer,
the array of pointers the environment list, and the strings they point to the environment strings.

Figure 7.5. Environment consisting of five C character strings

[View full size image]
environment environment environment

pointer list strings

environ: e e ————— = HOME= /home / sar\ 0

——— = PATH=:/bin: fusr/bin\0

————= SHELL=/bin/bash\0

—_— - TISER=sar\0

—_—— e [OGNAME=sarh 0

HULL

By convention, the environment consists of
name=value

strings, as shown in Figure 7.5. Most predefined names are entirely uppercase, but this is only a
convention.

Historically, most UNIX systems have provided a third argument to the mai n function that is the
address of the environment list:



int main(int argc, char *argv[], char *env[]);

Because I1SO C specifies that the mai n function be written with two arguments, and because this third
argument provides no benefit over the global variable envi r on, POSIX.1 specifies that envi r on should
be used instead of the (possible) third argument. Access to specific environment variables is normally
through the get env and put env functions, described in Section 7.9, instead of through the envi ron
variable. But to go through the entire environment, the envi r on pointer must be used.
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7.6. Memory Layout of a C Program

Historically, a C program has been composed of the following pieces:

e Text segment, the machine instructions that the CPU executes. Usually, the text segment is
sharable so that only a single copy needs to be in memory for frequently executed programs,
such as text editors, the C compiler, the shells, and so on. Also, the text segment is often read-
only, to prevent a program from accidentally modifying its instructions.

¢ Initialized data segment, usually called simply the data segment, containing variables that are
specifically initialized in the program. For example, the C declaration

int maxcount = 99;

appearing outside any function causes this variable to be stored in the initialized data segment
with its initial value.

e Uninitialized data segment, often called the "bss" segment, named after an ancient assembler
operator that stood for "block started by symbol.” Data in this segment is initialized by the
kernel to arithmetic O or null pointers before the program starts executing. The C declaration

| ong sunf1000];

appearing outside any function causes this variable to be stored in the uninitialized data
segment.

e Stack, where automatic variables are stored, along with information that is saved each time a
function is called. Each time a function is called, the address of where to return to and certain
information about the caller's environment, such as some of the machine registers, are saved
on the stack. The newly called function then allocates room on the stack for its automatic and
temporary variables. This is how recursive functions in C can work. Each time a recursive
function calls itself, a new stack frame is used, so one set of variables doesn't interfere with the
variables from another instance of the function.

e Heap, where dynamic memory allocation usually takes place. Historically, the heap has been
located between the uninitialized data and the stack.

Figure 7.6 shows the typical arrangement of these segments. This is a logical picture of how a
program looks; there is no requirement that a given implementation arrange its memory in this
fashion. Nevertheless, this gives us a typical arrangement to describe. With Linux on an Intel x86
processor, the text segment starts at location 0x08048000, and the bottom of the stack starts just



below 0xC0000000. (The stack grows from higher-numbered addresses to lower-numbered addresses
on this particular architecture.) The unused virtual address space between the top of the heap and

the top of the stack is large.

Figure 7.6. Typical memory arrangement

high address command-line arguments
and environment variables

stack

heap
uninitialized data initialized to
{bss) zero by exec
initialized data read from
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text by exec

low address

Several more segment types exist in an a. out , containing the symbol table, debugging
information, linkage tables for dynamic shared libraries, and the like. These additional sections
don't get loaded as part of the program's image executed by a process.

Note from Figure 7.6 that the contents of the uninitialized data segment are not stored in the
program file on disk. This is because the kernel sets it to O before the program starts running. The
only portions of the program that need to be saved in the program file are the text segment and the

initialized data.

The si ze(1) command reports the sizes (in bytes) of the text, data, and bss segments. For example:

$ size /usr/bin/cc /bin/sh
t ext data bss dec hex filenane
79606 1536 916 82058 1408a /usr/bin/cc
619234 21120 18260 658614 alch6 / bi n/sh



The fourth and fifth columns are the total of the three sizes, displayed in decimal and hexadecimal,
respectively.
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7.7. Shared Libraries

Most UNIX systems today support shared libraries. Arnold [1986] describes an early implementation
under System V, and Gingell et al. [1987] describe a different implementation under SunOS. Shared
libraries remove the common library routines from the executable file, instead maintaining a single
copy of the library routine somewhere in memory that all processes reference. This reduces the size
of each executable file but may add some runtime overhead, either when the program is first
executed or the first time each shared library function is called. Another advantage of shared libraries
is that library functions can be replaced with new versions without having to relink edit every
program that uses the library. (This assumes that the number and type of arguments haven't
changed.)

Different systems provide different ways for a program to say that it wants to use or not use the
shared libraries. Options for the cc(1) and | d(1) commands are typical. As an example of the size
differences, the following executable filethe classic hel | 0. ¢ programwas first created without shared
libraries:

$ cc -static hellol.c prevent gcc from using shared libraries
$1s -1 a. out
-rWXrwxr-x 1 sar 475570 Feb 18 23:17 a.out
$ size a.out
t ext data bss dec hex filenane
375657 3780 3220 382657 5dé6c1l a. out

If we compile this program to use shared libraries, the text and data sizes of the executable file are
greatly decreased:

$ cc hellol.c gcc defaults to use shared libraries
$1s -1 a.out
-rWXrwxr-x 1 sar 11410 Feb 18 23:19 a.out
$ size a.out
t ext dat a bss dec hex filenane
872 256 4 1132 46¢C a. out
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7.8. Memory Allocation

ISO C specifies three functions for memory allocation:

1. mal |l oc, which allocates a specified number of bytes of memory. The initial value of the memory
is indeterminate.

2. cal |l oc, which allocates space for a specified number of objects of a specified size. The space is
initialized to all O bits.

3. reall oc, which increases or decreases the size of a previously allocated area. When the size
increases, it may involve moving the previously allocated area somewhere else, to provide the
additional room at the end. Also, when the size increases, the initial value of the space between
the old contents and the end of the new area is indeterminate.

#i ncl ude <stdlib. h>
void *mall oc(size_t size);
void *calloc(size_t nobj, size t size);

void *realloc(void *ptr, size_ t newsize);

All three return: non-null pointer if OK, NULL on error

void free(void *ptr);

The pointer returned by the three allocation functions is guaranteed to be suitably aligned so that it
can be used for any data object. For example, if the most restrictive alignment requirement on a
particular system requires that doubl es must start at memory locations that are multiples of 8, then
all pointers returned by these three functions would be so aligned.

Because the three al | oc functions return a generic voi d * pointer, if we #i ncl ude <stdlib. h> (to
obtain the function prototypes), we do not explicitly have to cast the pointer returned by these
functions when we assign it to a pointer of a different type.



The function fr ee causes the space pointed to by ptr to be deallocated. This freed space is usually put
into a pool of available memory and can be allocated in a later call to one of the three al | oc
functions.

The real | oc function lets us increase or decrease the size of a previously allocated area. (The most
common usage is to increase an area.) For example, if we allocate room for 512 elements in an array
that we fill in at runtime but find that we need room for more than 512 elements, we can call

real | oc. If there is room beyond the end of the existing region for the requested space, then real | oc
doesn't have to move anything; it simply allocates the additional area at the end and returns the
same pointer that we passed it. But if there isn't room at the end of the existing region, real | oc
allocates another area that is large enough, copies the existing 512-element array to the new area,
frees the old area, and returns the pointer to the new area. Because the area may move, we
shouldn't have any pointers into this area. Exercise 4.16 shows the use of real | oc with get cwd to
handle any length pathname. Figure 17.36 shows an example that uses real | oc to avoid arrays with
fixed, compile-time sizes.

Note that the final argument to real | oc is the new size of the region, not the difference between the
old and new sizes. As a special case, if ptr is a null pointer, real | oc behaves like nal | oc and allocates
a region of the specified newsize.

Older versions of these routines allowed us to real | oc a block that we had f r eed since the last
call to mal | oc, real | oc, or cal | oc. This trick dates back to Version 7 and exploited the search
strategy of mal | oc to perform storage compaction. Solaris still supports this feature, but many
other platforms do not. This feature is deprecated and should not be used.

The allocation routines are usually implemented with the sbrk(2) system call. This system call
expands (or contracts) the heap of the process. (Refer to Figure 7.6.) A sample implementation of
mal | oc and free is given in Section 8.7 of Kernighan and Ritchie [1988].

Although sbr k can expand or contract the memory of a process, most versions of nal | oc and free
never decrease their memory size. The space that we free is available for a later allocation, but the
freed space is not usually returned to the kernel; that space is kept in the mal | oc pool.

It is important to realize that most implementations allocate a little more space than is requested and
use the additional space for record keepingthe size of the allocated block, a pointer to the next
allocated block, and the like. This means that writing past the end of an allocated area could
overwrite this record-keeping information in a later block. These types of errors are often
catastrophic, but difficult to find, because the error may not show up until much later. Also, it is
possible to overwrite this record keeping by writing before the start of the allocated area.

Writing past the end or before the beginning of a dynamically-allocated buffer can corrupt more than
internal record-keeping information. The memory before and after a dynamically-allocated buffer can
potentially be used for other dynamically-allocated objects. These objects can be unrelated to the
code corrupting them, making it even more difficult to find the source of the corruption.

Other possible errors that can be fatal are freeing a block that was already freed and calling f r ee with
a pointer that was not obtained from one of the three al | oc functions. If a process calls nmal | oc, but
forgets to call free, its memory usage continually increases; this is called leakage. By not calling free
to return unused space, the size of a process's address space slowly increases until no free space is
left. During this time, performance can degrade from excess paging overhead.

Because memory allocation errors are difficult to track down, some systems provide versions of these
functions that do additional error checking every time one of the three al | oc functions or free is



called. These versions of the functions are often specified by including a special library for the link
editor. There are also publicly available sources that you can compile with special flags to enable
additional runtime checking.

FreeBSD, Mac OS X, and Linux support additional debugging through the setting of environment
variables. In addition, options can be passed to the FreeBSD library through the symbolic link
/etc/ malloc.conf.

Alternate Memory Allocators

Many replacements for mal | oc and fr ee are available. Some systems already include libraries
providing alternate memory allocator implementations. Other systems provide only the standard
allocator, leaving it up to software developers to download alternatives, if desired. We discuss some
of the alternatives here.

[ 1 bmal | oc

SVR4-based systems, such as Solaris, include the |'i bmal | oc library, which provides a set of
interfaces matching the 1ISO C memory allocation functions. The |i bnal | oc library includes nal | opt, a
function that allows a process to set certain variables that control the operation of the storage
allocator. A function called mal | i nf 0 is also available to provide statistics on the memory allocator.

vimal | oc

Vo [1996] describes a memory allocator that allows processes to allocate memory using different
techniques for different regions of memory. In addition to the functions specific to vmal | oc, the library
also provides emulations of the ISO C memory allocation functions.

qui ck-fit

Historically, the standard nal | oc algorithm used either a best-fit or a first-fit memory allocation
strategy. Quick-fit is faster than either, but tends to use more memory. Weinstock and Wulf [1988]
describe the algorithm, which is based on splitting up memory into buffers of various sizes and
maintaining unused buffers on different free lists, depending on the size of the buffers. Free
implementations of mal | oc and free based on quick-fit are readily available from several FTP sites.

al | oca Function

One additional function is also worth mentioning. The function al | oca has the same calling sequence
as mal | oc; however, instead of allocating memory from the heap, the memory is allocated from the
stack frame of the current function. The advantage is that we don't have to free the space; it goes
away automatically when the function returns. The al | oca function increases the size of the stack
frame. The disadvantage is that some systems can't support al | oca, if it's impossible to increase the
size of the stack frame after the function has been called. Nevertheless, many software packages use



it, and implementations exist for a wide variety of systems.

All four platforms discussed in this text provide the al | oca function.

== e prcv | nexr e |
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7.9. Environment Variables

As we mentioned earlier, the environment strings are usually of the form
name=value

The UNIX kernel never looks at these strings; their interpretation is up to the various applications.
The shells, for example, use numerous environment variables. Some, such as HOVE and USER, are set
automatically at login, and others are for us to set. We normally set environment variables in a shell
start-up file to control the shell's actions. If we set the environment variable MAI LPATH, for example, it
tells the Bourne shell, GNU Bourne-again shell, and Korn shell where to look for mail.

ISO C defines a function that we can use to fetch values from the environment, but this standard
says that the contents of the environment are implementation defined.

#i ncl ude <stdlib. h>

char *getenv(const char *name);

Returns: pointer to value associated with name, NULL if not found

Note that this function returns a pointer to the value of a name=value string. We should always use
get env to fetch a specific value from the environment, instead of accessing envi r on directly.

Some environment variables are defined by POSIX.1 in the Single UNIX Specification, whereas others
are defined only if the XSI extensions are supported. Figure 7.7 lists the environment variables
defined by the Single UNIX Specification and also notes which implementations support the variables.
Any environment variable defined by POSIX.1 is marked with «; otherwise, it is an XSI extension.
Many additional implementation-dependent environment variables are used in the four
implementations described in this book. Note that ISO C doesn't define any environment variables.

Figure 7.7. Environment variables defined in the Single UNIX
Specification

Mac OS X
10.3

Solaris
9

Linux
2.4.22

FreeBSD

POSIX.1 521

Description

Variable



. FreeBSD | Linux | Mac OS X | Solaris o
. iption
Variable POSIX.1 521 |24922 103 9 Descrip

COLUWNS - - . - - terminal width

DATEMSK XSl - - get dat e(3) template file
pathname

HOVE - - - o - home directory

LANG - - o o - name of locale

LC ALL . - - o - name of locale

LC COLLATE - o . . - name of locale for collation

LC CTYPE . o . . - name of locale for character
classification

LC MESSAGES - . . - - name of locale for messages

LC_MONETARY - . . o - name of locale for monetary
editing

LC NUMERI C . . - - - name of locale for numeric
editing

LC TI ME - . . o - name of locale for date/time
formatting

LI NES - - - - - terminal height

LOGNAMVE ] . - . - login name

MSGVERB XSlI - - f nmt meg(3) message
components to process

NLSPATH XSl - - - - sequence of templates for
message catalogs

PATH - - - - - list of path prefixes to search
for executable file

PWD - . . - - absolute pathname of current
working directory

SHELL - - - - - name of user's preferred shell

TERM - . o - . terminal type

TWMPDI R - - - - - pathname of directory for
creating temporary files

TZ - . . - - time zone information




In addition to fetching the value of an environment variable, sometimes we may want to set an
environment variable. We may want to change the value of an existing variable or add a new variable
to the environment. (In the next chapter, we'll see that we can affect the environment of only the
current process and any child processes that we invoke. We cannot affect the environment of the
parent process, which is often a shell. Nevertheless, it is still useful to be able to modify the
environment list.) Unfortunately, not all systems support this capability. Figure 7.8 shows the
functions that are supported by the various standards and implementations.

Figure 7.8. Support for various environment list functions

get env . - - . . .
put env XSI - . - -
set env . . . .

unset env . - - .

cl earenv "

cl ear env is not part of the Single UNIX Specification. It is used to remove all entries from the
environment list.

The prototypes for the middle three functions listed in Figure 7.8 are

View full width

#i nclude <stdlib. h>
int putenv(char *sir);

i nt setenv(const char *name, const char *value,
=nt rewrite) ;

i nt unsetenv(const char *name);

All return: O if OK, nonzero on error

The operation of these three functions is as follows.



e The put env function takes a string of the form name=value and places it in the environment list.
If name already exists, its old definition is first removed.

e The set env function sets name to value. If name already exists in the environment, then (a) if
rewrite is nonzero, the existing definition for name is first removed; (b) if rewrite is 0, an
existing definition for name is not removed, name is not set to the new value, and no error
occurs.

e The unset env function removes any definition of name. It is not an error if such a definition does
not exist.

Note the difference between put env and set env. Whereas set env must allocate memory to
create the name=value string from its arguments, put env is free to place the string passed
to it directly into the environment. Indeed, on Linux and Solaris, the put env
implementation places the address of the string we pass to it directly into the environment
list. In this case, it would be an error to pass it a string allocated on the stack, since the
memory would be reused after we return from the current function.

It is interesting to examine how these functions must operate when modifying the environment list.
Recall Figure 7.6: the environment listthe array of pointers to the actual name=value stringsand the
environment strings are typically stored at the top of a process's memory space, above the stack.
Deleting a string is simple; we simply find the pointer in the environment list and move all
subsequent pointers down one. But adding a string or modifying an existing string is more difficult.
The space at the top of the stack cannot be expanded, because it is often at the top of the address
space of the process and so can't expand upward; it can't be expanded downward, because all the
stack frames below it can't be moved.

1. If we're modifying an existing name:

a. If the size of the new value is less than or equal to the size of the existing value, we can
just copy the new string over the old string.

b. If the size of the new value is larger than the old one, however, we must nal | oc to obtain
room for the new string, copy the new string to this area, and then replace the old pointer
in the environment list for name with the pointer to this allocated area.

2. If we're adding a new name, it's more complicated. First, we have to call mal | oc to allocate
room for the name=value string and copy the string to this area.

a. Then, if it's the first time we've added a new name, we have to call nal | oc to obtain room
for a new list of pointers. We copy the old environment list to this new area and store a
pointer to the name=value string at the end of this list of pointers. We also store a null
pointer at the end of this list, of course. Finally, we set envi r on to point to this new list of
pointers. Note from Figure 7.6 that if the original environment list was contained above
the top of the stack, as is common, then we have moved this list of pointers to the heap.
But most of the pointers in this list still point to name=value strings above the top of the
stack.



b.

If this isn't the first time we've added new strings to the environment list, then we know
that we've already allocated room for the list on the heap, so we just call real | oc to
allocate room for one more pointer. The pointer to the new name=value string is stored at
the end of the list (on top of the previous null pointer), followed by a null pointer.

e rrev | nexr
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7.10. setj np and | ongj np Functions

In C, we can't got o a label that's in another function. Instead, we must use the setjnp and | ongj np
functions to perform this type of branching. As we'll see, these two functions are useful for handling
error conditions that occur in a deeply nested function call.

Consider the skeleton in Figure 7.9. It consists of a main loop that reads lines from standard input
and calls the function do_| i ne to process each line. This function then calls get t oken to fetch the
next token from the input line. The first token of a line is assumed to be a command of some form,
and a swi t ch statement selects each command. For the single command shown, the function cnd_add
is called.

Figure 7.9. Typical program skeleton for command processing

#i ncl ude "apue. h"
#defi ne TOK_ADD 5

voi d do_line(char *);
voi d cnd_add(voi d);
i nt get _token(void);

i nt
mai n(voi d)
{
char I'i ne[ MAXLI NE] ;

while (fgets(line, MAXLINE, stdin) != NULL)
do_line(line);

exit(0);
}
char *tok _ptr; /* global pointer for get token() */
voi d
do_line(char *ptr) /* process one |line of input */
{
i nt cnd;

tok _ptr = ptr;
while ((cnmd = get_token()) > 0) {
switch (cnd) { /* one case for each conmand */
case TOK_ADD:
cnd_add() ;



br eak;

}

voi d
cnd_add(voi d)
{

int t oken;

token = get _token();
/* rest of processing for this command */

}

i nt

get token(void)
{

}

/* fetch next token fromline pointed to by tok_ptr */

The skeleton in Figure 7.9 is typical for programs that read commands, determine the command
type, and then call functions to process each command. Figure 7.10 shows what the stack could look
like after cnd_add has been called.

Figure 7.10. Stack frames after cnmd_add has been called
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Storage for the automatic variables is within the stack frame for each function. The array | i ne is in
the stack frame for mai n, the integer cnd is in the stack frame for do_I i ne, and the integer t oken is in
the stack frame for cnd_add.



As we've said, this type of arrangement of the stack is typical, but not required. Stacks do not have
to grow toward lower memory addresses. On systems that don't have built-in hardware support for
stacks, a C implementation might use a linked list for its stack frames.

The coding problem that's often encountered with programs like the one shown in Figure 7.9 is how
to handle nonfatal errors. For example, if the cnd_add function encounters an errorsay, an invalid
numberit might want to print an error, ignore the rest of the input line, and return to the mai n
function to read the next input line. But when we're deeply nested numerous levels down from the
mai n function, this is difficult to do in C. (In this example, in the cnmd_add function, we're only two
levels down from nmi n, but it's not uncommon to be five or more levels down from where we want to
return to.) It becomes messy if we have to code each function with a special return value that tells it
to return one level.

The solution to this problem is to use a nonlocal got o: the setj np and | ongj np functions. The
adjective nonlocal is because we're not doing a normal C got o statement within a function; instead,
we're branching back through the call frames to a function that is in the call path of the current
function.

#i ncl ude <setjnp. h>

int setjnp(jnp_buf env);

Returns: O if called directly, nonzero if returning from a call to | ongj np

voi d | ongj np(jnmp_buf env, int val);

We call setj np from the location that we want to return to, which in this example is in the mai n
function. In this case, setj np returns O because we called it directly. In the call to setj np, the
argument env is of the special type j np_buf . This data type is some form of array that is capable of
holding all the information required to restore the status of the stack to the state when we call

I ongj np. Normally, the env variable is a global variable, since we'll need to reference it from another
function.

When we encounter an errorsay, in the cnd_add functionwe call | ongj np with two arguments. The first
is the same env that we used in a call to setj np, and the second, val, is a nonzero value that
becomes the return value from set j np. The reason for the second argument is to allow us to have
more than one | ongj np for each setj np. For example, we could | ongj np from cnd_add with a val of 1
and also call | ongj np from get _t oken with a val of 2. In the mai n function, the return value from
setjnp is either 1 or 2, and we can test this value, if we want, and determine whether the | ongj np
was from cnd_add or get _t oken.

Let's return to the example. Figure 7.11 shows both the mai n and cnd_add functions. (The other two
functions, do_I| i ne and get _t oken, haven't changed.)



Figure 7.11. Example of setj np and | ongj np
#1 ncl ude "apue. h"

#i nclude <setjnp. h>

#defi ne TOK _ADD 5

j mp_buf j npbuffer;

i nt
mai n( voi d)
{
char I'i ne[ MAXLI NE] ;
if (setjnp(jnpbuffer) !'= 0)
printf("error");
while (fgets(line, MAXLINE, stdin) !'= NULL)
do_line(line);
exit(0);
}
voi d
cnd_add(voi d)
{
i nt t oken;
token = get_token();
if (token < 0) /* an error has occurred */
[ ongj mp(j npbuffer, 1);
/* rest of processing for this command */
}

When nui n is executed, we call setj np, which records whatever information it needs to in the variable
j mpbuf f er and returns 0. We then call do_| i ne, which calls cnd_add, and assume that an error of
some form is detected. Before the call to | ongj nmp in cnd_add, the stack looks like that in Figure 7.10.
But | ongj np causes the stack to be "unwound" back to the nai n function, throwing away the stack
frames for cnd_add and do_I i ne (Figure 7.12). Calling | ongj np causes the setj np in mai n to return,
but this time it returns with a value of 1 (the second argument for | ongj np).

Figure 7.12. Stack frame after | ongj rp has been called
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Automatic, Register, and Volatile Variables

We've seen what the stack looks like after calling | ongj np. The next question is, "what are the states
of the automatic variables and register variables in the mai n function?" When n=i n is returned to by
the | ongj np, do these variables have values corresponding to when the set j mp was previously called
(i.e., are their values rolled back), or are their values left alone so that their values are whatever
they were when do_I i ne was called (which caused cnd_add to be called, which caused | ongj np to be
called)? Unfortunately, the answer is "it depends." Most implementations do not try to roll back these
automatic variables and register variables, but the standards say only that their values are
indeterminate. If you have an automatic variable that you don't want rolled back, define it with the
vol ati | e attribute. Variables that are declared global or static are left alone when | ongj np is
executed.

Example

The program in Figure 7.13 demonstrates the different behavior that can be seen with automatic,
global, register, static, and volatile variables after calling | ongj np.

If we compile and test the program in Figure 7.13, with and without compiler optimizations, the
results are different:

$ cc testjnmp.c compile without any optimization

$ ./a.out

in f1():

gl obval = 95, autoval = 96, regival = 97, volaval = 98, statval = 99
after | ongjnp:

gl obval = 95, autoval = 96, regival = 97, volaval = 98, statval = 99
$ cc -Otestjnmp.c compile with full optimization

$ ./a.out

in f1():

gl obval = 95, autoval = 96, regival = 97, volaval = 98, statval = 99

after |ongjnp:



gl obval = 95, autoval = 2, regival = 3, volaval = 98, statval = 99

Note that the optimizations don't affect the global, static, and volatile variables; their values after the
| ongj np are the last values that they assumed. The setj np(3) manual page on one system states
that variables stored in memory will have values as of the time of the | ongj np, whereas variables in
the CPU and floating-point registers are restored to their values when set j np was called. This is
indeed what we see when we run the program in Figure 7.13. Without optimization, all five variables
are stored in memory (the regi st er hint is ignored for regi val ). When we enable optimization, both
aut oval and regi val go into registers, even though the former wasn't declared regi st er, and the

vol ati | e variable stays in memory. The thing to realize with this example is that you must use the
vol ati | e attribute if you're writing portable code that uses nonlocal jumps. Anything else can change
from one system to the next.

Some printf format strings in Figure 7.13 are longer than will fit comfortably for display in a
programming text. Instead of making multiple calls to print f, we rely on ISO C's string
concatenation feature, where the sequence

"stringl" "string2"

is equivalent to

"stringlstring2"

Figure 7.13. Effect of | ongj np on various types of variables

#i ncl ude "apue. h"
#i nclude <setjnp. h>

static void fl1(int, int, int, int);
static void f2(void);

static jnp_buf jnpbuffer;

static int gl obval ;

i nt

mai n( voi d)

{
i nt aut oval ;
regi ster int regival;
volatile int vol aval ;

static int stat val ;



globval = 1; autoval = 2; regival = 3; volaval = 4; statval = 5;

if (setjnmp(jnpbuffer) !'=0) {
printf("after |ongjnp:\n");
printf("globval = %l, autoval = %l, regival = %l,"

" volaval = %, statval = %\ n",
gl obval , autoval, regival, volaval, statval);
exit(0);

}
/*
* Change variabl es after setjnp, but before |ongjnp.
*/
gl obval = 95; autoval = 96; regival = 97; volaval = 98;
statval = 99;

f1(autoval, regival, volaval, statval); /* never returns */

exit(0);
}
static void
f1(int i, int j, int k, int I)
{

printf("in f1():\n");
printf("globval = %, autoval = %, regival = %,"

" volaval = %, statval = %\n", globval, i, j, k, 1);
f20);
}
static void
f2(void)
{
| ongj mp(j npbuffer, 1);
}

We'll return to these two functions, setj np and | ongj np, in Chapter 10 when we discuss signal
handlers and their signal versions: si gsetj np and si gl ongj np.

Potential Problem with Automatic Variables

Having looked at the way stack frames are usually handled, it is worth looking at a potential error in
dealing with automatic variables. The basic rule is that an automatic variable can never be referenced
after the function that declared it returns. There are numerous warnings about this throughout the
UNIX System manuals.

Figure 7.14 shows a function called open_dat a that opens a standard 1/0 stream and sets the
buffering for the stream.



Figure 7.14. Incorrect usage of an automatic variable

#i ncl ude <stdi o. h>
#def i ne DATAFI LE "datafile"

FILE *
open_dat a(voi d)
{
FI LE *fp;
char dat abuf [ BUFSI Z] ; /* setvbuf makes this the stdio buffer */

if ((fp = fopen(DATAFILE, "r")) == NULL)
return(NULL) ;

if (setvbuf(fp, databuf, _|ICOLBF, BUFSIZ) != 0)
return(NULL);

return(fp); [* error */

The problem is that when open_dat a returns, the space it used on the stack will be used by the stack
frame for the next function that is called. But the standard 1/0 library will still be using that portion of
memory for its stream buffer. Chaos is sure to result. To correct this problem, the array dat abuf
needs to be allocated from global memory, either statically (st ati c or ext ern) or dynamically (one of
the al | oc functions).

=TT e rrev | nexr
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7.11.getrlimt andsetrlimt Functions

Every process has a set of resource limits, some of which can be queried and changed by the
geTRIinmt and setrlinit functions.

View full width

#i ncl ude <sys/resource. h>
int getrlimt(int resource, struct rlimt *rlptr);

int setrlimt(int resource, const struct rlimt
= rlptr) ;

Both return: O if OK, nonzero on error

These two functions are defined as XSI extensions in the Single UNIX Specification. The
resource limits for a process are normally established by process O when the system is
initialized and then inherited by each successive process. Each implementation has its own way

of tuning the various limits.
Each call to these two functions specifies a single resource and a pointer to the following structure:
struct rlimt {

rltimt rlimcur; /* soft limt: current limt */
riimt rlimnax; /* hard limt: maxi mumvalue for rlimcur */

b

Three rules govern the changing of the resource limits.

1. A process can change its soft limit to a value less than or equal to its hard limit.

2. A process can lower its hard limit to a value greater than or equal to its soft limit. This lowering
of the hard limit is irreversible for normal users.

3. Only a superuser process can raise a hard limit.



An infinite limit is specified by the constant RLI M | NFI NI TY.

The resource argument takes on one of the following values. Figure 7.15 shows which limits are
defined by the Single UNIX Specification and supported by each implementation.

Figure 7.15. Support for resource limits

Limit %S| FreeBSD | Linux | Mac OS X | Solaris

5.2.1 |2.4.22 10.3 9

RLIM T_AS . - .

RLIM T_CORE - - - - -

RLIM T_CPU - . - . .

RLI M T_DATA - - - - -

RLI M T_FSI ZE - - - - -

RLI M T_LOCKS .

RLI M T_MEMLOCK - - -

RLI M T_NOFI LE - - - - -

RLI M T_NPROCC - - -

RLIM T_RSS . . .

RLI M T_SBSI ZE -

RLI M T_STACK . - - - -

RLI M T_VNVEM - .




RLIM T_AS

RLI M T_CORE

RLIM T_CPU

RLI M T_DATA

RLI M T_FSI ZE

RLI M T_LOCKS

RLI M T_MEMLOCK

RLI M T_NCFI LE

RLI M T_NPRCC

RLI M T_RSS

RLI M T_SBSI ZE

RLI M T_STACK

RLI M T_VMEM

The maximum size in bytes of a process's total available memory. This affects
the sbrk function (Section 1.11) and the nmap function (Section 14.9).

The maximum size in bytes of a core file. A limit of O prevents the creation of a
core file.

The maximum amount of CPU time in seconds. When the soft limit is exceeded,
the SI GXCPU signal is sent to the process.

The maximum size in bytes of the data segment: the sum of the initialized
data, uninitialized data, and heap from Figure 7.6.

The maximum size in bytes of a file that may be created. When the soft limit is
exceeded, the process is sent the S| GXFSZ signal.

The maximum number of file locks a process can hold. (This number also
includes file leases, a Linux-specific feature. See the Linux f cnt | (2) manual
page for more information.)

The maximum amount of memory in bytes that a process can lock into memory
using n ock(2).

The maximum number of open files per process. Changing this limit affects the
value returned by the sysconf function for its _SC OPEN_MAX argument (Section

2.5.4). See Figure 2.16 also.

The maximum number of child processes per real user ID. Changing this limit
affects the value returned for _SC CHI LD_MAX by the sysconf function (Section

2.5.4).

Maximum resident set size (RSS) in bytes. If available physical memory is low,
the kernel takes memory from processes that exceed their RSS.

The maximum size in bytes of socket buffers that a user can consume at any
given time.

The maximum size in bytes of the stack. See Figure 7.6.

This is a synonym for RLI M T_AS.

The resource limits affect the calling process and are inherited by any of its children. This means that
the setting of resource limits needs to be built into the shells to affect all our future processes.
Indeed, the Bourne shell, the GNU Bourne-again shell, and the Korn shell have the built-in ul i mit
command, and the C shell has the built-in i it command. (The unask and chdi r functions also have
to be handled as shell built-ins.)

Example

The program in Figure 7.16 prints out the current soft limit and hard limit for all the resource limits
supported on the system. To compile this program on all the various implementations, we have
conditionally included the resource names that differ. Note also that we must use a different pri nt f
format on platforms that define rli mt to be an unsi gned | ong | ong instead of an unsi gned | ong.



Note that we've used the ISO C string-creation operator (#) in the doit macro, to generate the string
value for each resource name. When we say

doi t (RLI M T_CORE) ;

the C preprocessor expands this into

pr_limts("RLIMT_CORE", RLIM T_CORE);

Running this program under FreeBSD gives us the following:

$ ./a.out

RLIM T_CORE (infinite) (infinite)
RLIM T_CPU (infinite) (infinite)
RLI M T_DATA 536870912 536870912
RLIM T_FSI ZE (infinite) (infinite)
RLIM T_MEMLOCK (infinite) (infinite)
RLI M T_NOFI LE 1735 1735
RLI M T_NPROC 867 867
RLIM T_RSS (infinite) (infinite)
RLI M T_SBSI ZE (infinite) (infinite)
RLI M T_STACK 67108864 67108864
RLIM T_VMEM (infinite) (infinite)

Solaris gives us the following results:

$ ./a. out

RLIM T_AS (infinite) (infinite)
RLIM T_CORE (infinite) (infinite)
RLIM T_CPU (infinite) (infinite)
RLI M T_DATA (infinite) (infinite)
RLIM T_FSI ZE (infinite) (infinite)
RLI M T_NOFI LE 256 65536
RLI M T_STACK 8388608 (infinite)
RLIM T_VMEM (infinite) (infinite)

Figure 7.16. Print the current resource limits



#i ncl ude "apue. h"

#i f defined(BSD) || defined( MACOS)
#i nclude <sys/tine. h>

#define FMI "9%d0l1d "

#el se

#define FMI "9%d0ld "

#endi f

#i ncl ude <sys/resource. h>

#define doit(nanme) pr_limts(#nane, nane)
static void pr_limts(char *, int);

i nt
mai n( voi d)

{

#i fdef RLIMT_AS
doit (RLIM T_AS);
#endi f
doit (RLIM T_CORE);
doit (RLIM T_CPU);
doi t (RLI M T_DATA) ;
doit (RLIM T_FSI ZE) ;
#i fdef RLIMT_LOCKS
doit (RLIM T_LOCKS);
#endi f
#ifdef RLIMT_MEMLOCK
doi t (RLIM T_MEMLOCK) ;
#endi f
doi t (RLI M T_NOCFI LE)
#i fdef RLIMT_NPROC
doi t (RLIM T_NPRQO) ;
#endi f
#ifdef RLIMT_RSS
doit (RLIM T_RSS);
#endi f
#i fdef RLIM T_SBSIZE
doit (RLIM T_SBSI ZE) ;
#endi f
doi t (RLI M T_STACK) ;
#i fdef RLIMT_VMEM
doit (RLIM T_VMEM) ;
#endi f
exit(0);
}

static void
pr_limts(char *nane, int resource)

{

struct rlimt limt;



if (getrlimt(resource, &imt) < 0)
err_sys("getrlimt error for %", nane);

printf("% 14s ", nane);

if (limt.rlimecur == RLIMINFINTY)
printf("(infinite) ");

el se
printf(FMI, limt.rlimecur);

if (limt.rlimmx == RLIM.INFINTY)
printf("(infinite)");

el se
printf(FMI, limt.rlimmx);

putchar((int)'\n");

Exercise 10.11 continues the discussion of resource limits, after we've covered signals.
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7.12. Summary

Understanding the environment of a C program in a UNIX system's environment is a prerequisite to
understanding the process control features of the UNIX System. In this chapter, we've looked at how
a process is started, how it can terminate, and how it's passed an argument list and an environment.
Although both are uninterpreted by the kernel, it is the kernel that passes both from the caller of
exec to the new process.

We've also examined the typical memory layout of a C program and how a process can dynamically
allocate and free memory. It is worthwhile to look in detail at the functions available for manipulating
the environment, since they involve memory allocation. The functions setj np and | ongj np were
presented, providing a way to perform nonlocal branching within a process. We finished the chapter
by describing the resource limits that various implementations provide.
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Exercises

7.1 On an Intel x86 system under both FreeBSD and Linux, if we execute the program that
prints "hello, world" and do not call exit or return, the termination status of the
program, which we can examine with the shell, is 13. Why?

7.2 When is the output from the printfsin Figure 7.3 actually output?
7.3 Is there any way for a function that is called by nai n to examine the command-line

arguments without (a) passing ar gc and ar gv as arguments from mai n to the function or
(b) having mai n copy ar gc and ar gv into global variables?

7.4 Some UNIX system implementations purposely arrange that, when a program is
executed, location O in the data segment is not accessible. Why?

7.5 Use the typedef facility of C to define a new data type Exi t f unc for an exit handler. Redo
the prototype for at exi t using this data type.

7.6 If we allocate an array of | ongs using cal | oc, is the array initialized to 0? If we allocate
an array of pointers using cal | oc, is the array initialized to null pointers?

7.7 In the output from the si ze command at the end of Section 7.6, why aren't any sizes
given for the heap and the stack?

7.8 In Section 7.7, the two file sizes (475570 and 11410) don't equal the sums of their
respective text and data sizes. Why?

7.9 In Section 7.7, why is there such a difference in the size of the executable file when
using shared libraries for such a trivial program?

7.10 At the end of Section 7.10, we showed how a function can't return a pointer to an
automatic variable. Is the following code correct?



i nt
f1(int val)
{ .
i nt
if (val
i nt

val

ptr
}

return(*

*ptr;

== O){

val ;

5;
&val

ptr + 1);
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8.1. Introduction

We now turn to the process control provided by the UNIX System. This includes the creation of new
processes, program execution, and process termination. We also look at the various IDs that are the
property of the processreal, effective, and saved; user and group IDsand how they're affected by the
process control primitives. Interpreter files and the syst emfunction are also covered. We conclude the
chapter by looking at the process accounting provided by most UNIX systems. This lets us look at the
process control functions from a different perspective.
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8.2. Process ldentifiers

Every process has a unique process ID, a non-negative integer. Because the process ID is the only
well-known identifier of a process that is always unique, it is often used as a piece of other identifiers,
to guarantee uniqueness. For example, applications sometimes include the process ID as part of a
filename in an attempt to generate unique filenames.

Although unique, process IDs are reused. As processes terminate, their IDs become candidates for
reuse. Most UNIX systems implement algorithms to delay reuse, however, so that newly created
processes are assigned IDs different from those used by processes that terminated recently. This
prevents a new process from being mistaken for the previous process to have used the same ID.

There are some special processes, but the details differ from implementation to implementation.
Process ID O is usually the scheduler process and is often known as the swapper. No program on disk
corresponds to this process, which is part of the kernel and is known as a system process. Process ID
1is usually the i nit process and is invoked by the kernel at the end of the bootstrap procedure. The
program file for this process was / et c/i ni t in older versions of the UNIX System and is /shin/init in
newer versions. This process is responsible for bringing up a UNIX system after the kernel has been
bootstrapped. i ni t usually reads the system-dependent initialization filesthe / et c/rc* files or
/etc/inittab and the filesin/etc/init.dand brings the system to a certain state, such as multiuser.
The i nit process never dies. It is a normal user process, not a system process within the kernel, like
the swapper, although it does run with superuser privileges. Later in this chapter, we'll see how i ni t
becomes the parent process of any orphaned child process.

Each UNIX System implementation has its own set of kernel processes that provide operating system
services. For example, on some virtual memory implementations of the UNIX System, process ID 2 is
the pagedaemon. This process is responsible for supporting the paging of the virtual memory system.

In addition to the process ID, there are other identifiers for every process. The following functions
return these identifiers.



#i ncl ude <uni std. h>

pid t getpid(void);

Returns: process ID of calling process

pid_t getppid(void);

Returns: parent process ID of calling process

uid_t getuid(void);

Returns: real user ID of calling process

uid_t geteuid(void);

Returns: effective user ID of calling process

gid_t getgid(void);

Returns: real group ID of calling process

gid t getegid(void);

Returns: effective group ID of calling process

Note that none of these functions has an error return. We'll return to the parent process ID in the
next section when we discuss the f or k function. The real and effective user and group IDs were

discussed in Section 4.4.
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8.3. f or k Function

An existing process can create a new one by calling the f or k function.

#i ncl ude <uni std. h>

pid_t fork(void);

Returns: O in child, process ID of child in parent, 1 on error

The new process created by fork is called the child process. This function is called once but returns
twice. The only difference in the returns is that the return value in the child is 0, whereas the return
value in the parent is the process ID of the new child. The reason the child's process ID is returned to
the parent is that a process can have more than one child, and there is no function that allows a
process to obtain the process IDs of its children. The reason f or k returns 0 to the child is that a
process can have only a single parent, and the child can always call get ppi d to obtain the process ID
of its parent. (Process ID O is reserved for use by the kernel, so it's not possible for O to be the
process ID of a child.)

Both the child and the parent continue executing with the instruction that follows the call to f ork. The
child is a copy of the parent. For example, the child gets a copy of the parent's data space, heap, and
stack. Note that this is a copy for the child; the parent and the child do not share these portions of
memory. The parent and the child share the text segment (Section 7.6).

Current implementations don't perform a complete copy of the parent's data, stack, and heap, since
a fork is often followed by an exec. Instead, a technique called copy-on-write (COW) is used. These
regions are shared by the parent and the child and have their protection changed by the kernel to
read-only. If either process tries to modify these regions, the kernel then makes a copy of that piece
of memory only, typically a "page" in a virtual memory system. Section 9.2 of Bach [1986] and
Sections 5.6 and 5.7 of McKusick et al. [1996] provide more detail on this feature.

Variations of the f or k function are provided by some platforms. All four platforms discussed in
this book support the vf or k(2) variant discussed in the next section.

Linux 2.4.22 also provides new process creation through the cl one(2) system call. This is a
generalized form of f or k that allows the caller to control what is shared between parent and
child.

FreeBSD 5.2.1 provides the rf or k(2) system call, which is similar to the Linux cl one system call.
The rfork call is derived from the Plan 9 operating system (Pike et al. [1995]).



Solaris 9 provides two threads libraries: one for POSIX threads (pthreads) and one for Solaris
threads. The behavior of f or k differs between the two thread libraries. For POSIX threads, f or k
creates a process containing only the calling thread, but for Solaris threads, f ork creates a
process containing copies of all threads from the process of the calling thread. To provide similar
semantics as POSIX threads, Solaris provides the f or k1 function, which can be used to create a
process that duplicates only the calling thread, regardless of the thread library used. Threads
are discussed in detail in Chapters 11 and 12.

Example

The program in Figure 8.1 demonstrates the f or k function, showing how changes to variables in a
child process do not affect the value of the variables in the parent process.

If we execute this program, we get

$ ./a. out

a wite to stdout

before fork

pid = 430, glob = 7, var = 89 child's variables were changed
pid = 429, glob = 6, var = 88 parent's copy was not changed
$ ./a.out > tenp.out

$ cat tenp.out

a wite to stdout

before fork

pid = 432, glob = 7, var = 89
before fork
pid = 431, glob = 6, var = 88

In general, we never know whether the child starts executing before the parent or vice versa. This
depends on the scheduling algorithm used by the kernel. If it's required that the child and parent
synchronize, some form of interprocess communication is required. In the program shown in Figure
8.1, we simply have the parent put itself to sleep for 2 seconds, to let the child execute. There is no
guarantee that this is adequate, and we talk about this and other types of synchronization in Section
8.9 when we discuss race conditions. In Section 10.16, we show how to use signals to synchronize a
parent and a child after a f or k.

When we write to standard output, we subtract 1 from the size of buf to avoid writing the terminating
null byte. Although st rl en will calculate the length of a string not including the terminating null byte,
si zeof calculates the size of the buffer, which does include the terminating null byte. Another
difference is that using st rl en requires a function call, whereas si zeof calculates the buffer length at
compile time, as the buffer is initialized with a known string, and its size is fixed.

Note the interaction of f or k with the 1/0 functions in the program in Figure 8.1. Recall from Chapter
3 that the wri t e function is not buffered. Because wri t e is called before the f ork, its data is written
once to standard output. The standard 1/0 library, however, is buffered. Recall from Section 5.12
that standard output is line buffered if it's connected to a terminal device; otherwise, it's fully
buffered. When we run the program interactively, we get only a single copy of the printf line,
because the standard output buffer is flushed by the newline. But when we redirect standard output



to a file, we get two copies of the printf line. In this second case, the printf before the fork is called
once, but the line remains in the buffer when f or k is called. This buffer is then copied into the child
when the parent's data space is copied to the child. Both the parent and the child now have a
standard 1/0 buffer with this line in it. The second printf, right before the exi t, just appends its data
to the existing buffer. When each process terminates, its copy of the buffer is finally flushed.

Figure 8.1. Example of f ork function

#i ncl ude "apue. h"

i nt gl ob = 6; /* external variable in initialized data */
char buf[] = "a wite to stdout\n";
i nt
mai n( voi d)
{
i nt var; /* automatic variable on the stack */
pid t pi d;
var = 88;
if (wite(STDOUT_FILENO buf, sizeof(buf)-1) != sizeof(buf)-1)
err_sys("wite error");
printf("before fork\n"); /* we don't flush stdout */
if ((pid="fork()) <0) {
err_sys("fork error");
} elseif (pid == 0) { [* child */
gl ob++; /* nmodify variables */
var ++;
} else {
sl eep(2); /* parent */
}
printf("pid = %, glob = %, var = %\ n", getpid(), glob, var);
exit(0);
}
File Sharing

When we redirect the standard output of the parent from the program in Figure 8.1, the child's
standard output is also redirected. Indeed, one characteristic of f or k is that all file descriptors that
are open in the parent are duplicated in the child. We say "duplicated" because it's as if the dup
function had been called for each descriptor. The parent and the child share a file table entry for
every open descriptor (recall Figure 3.8).

Consider a process that has three different files opened for standard input, standard output, and
standard error. On return from f or k, we have the arrangement shown in Figure 8.2.



Figure 8.2. Sharing of open files between parent and child after fork
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It is important that the parent and the child share the same file offset. Consider a process that f or ks
a child, then wai t s for the child to complete. Assume that both processes write to standard output as
part of their normal processing. If the parent has its standard output redirected (by a shell, perhaps)
it is essential that the parent's file offset be updated by the child when the child writes to standard
output. In this case, the child can write to standard output while the parent is wai t ing for it; on
completion of the child, the parent can continue writing to standard output, knowing that its output
will be appended to whatever the child wrote. If the parent and the child did not share the same file
offset, this type of interaction would be more difficult to accomplish and would require explicit actions
by the parent.

If both parent and child write to the same descriptor, without any form of synchronization, such as
having the parent wai t for the child, their output will be intermixed (assuming it's a descriptor that
was open before the f or k). Although this is possiblewe saw it in Figure 8.2it's not the normal mode of
operation.

There are two normal cases for handling the descriptors after a f ork.

1. The parent waits for the child to complete. In this case, the parent does not need to do anything
with its descriptors. When the child terminates, any of the shared descriptors that the child read



from or wrote to will have their file offsets updated accordingly.

Both the parent and the child go their own ways. Here, after the f or k, the parent closes the
descriptors that it doesn't need, and the child does the same thing. This way, neither interferes
with the other's open descriptors. This scenario is often the case with network servers.

Besides the open files, there are numerous other properties of the parent that are inherited by the

child:

Real user ID, real group ID, effective user ID, effective group ID
Supplementary group IDs

Process group ID

Session ID

Controlling terminal

The set-user-1D and set-group-ID flags

Current working directory

Root directory

File mode creation mask

Signal mask and dispositions

The close-on-exec flag for any open file descriptors
Environment

Attached shared memory segments

Memory mappings

Resource limits

The differences between the parent and child are

The return value from f or k
The process IDs are different

The two processes have different parent process IDs: the parent process ID of the child is the
parent; the parent process ID of the parent doesn't change

The child's tns_utinme, tns_stine, tns_cutine, and tns_csti nme values are set to O
File locks set by the parent are not inherited by the child

Pending alarms are cleared for the child



e The set of pending signals for the child is set to the empty set
Many of these features haven't been discussed yetwe'll cover them in later chapters.

The two main reasons for f or k to fail are (a) if too many processes are already in the system, which

usually means that something else is wrong, or (b) if the total number of processes for this real user
ID exceeds the system's limit. Recall from Figure 2.10 that CH LD_MAX specifies the maximum number
of simultaneous processes per real user ID.

There are two uses for fork:

1. When a process wants to duplicate itself so that the parent and child can each execute different
sections of code at the same time. This is common for network serversthe parent waits for a
service request from a client. When the request arrives, the parent calls f or k and lets the child
handle the request. The parent goes back to waiting for the next service request to arrive.

2. When a process wants to execute a different program. This is common for shells. In this case,
the child does an exec (which we describe in Section 8.10) right after it returns from the f or k.

Some operating systems combine the operations from step 2a f or k followed by an execinto a single
operation called a spawn. The UNIX System separates the two, as there are numerous cases where it
is useful to f or k without doing an exec. Also, separating the two allows the child to change the per-
process attributes between the f or k and the exec, such as 1/0 redirection, user ID, signal disposition,
and so on. We'll see numerous examples of this in Chapter 15.

The Single UNIX Specification does include spawn interfaces in the advanced real-time option
group. These interfaces are not intended to be replacements for f or k and exec, however. They
are intended to support systems that have difficulty implementing f or k efficiently, especially
systems without hardware support for memory management.
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8.4. vf or k Function

The function vf or k has the same calling sequence and same return values as f or k. But the semantics
of the two functions differ.

The vf or k function originated with 2.9BSD. Some consider the function a blemish, but all the
platforms covered in this book support it. In fact, the BSD developers removed it from the
4.4BSD release, but all the open source BSD distributions that derive from 4.4BSD added
support for it back into their own releases. The vfor k function is marked as an obsolete
interface in Version 3 of the Single UNIX Specification.

The vf or k function is intended to create a new process when the purpose of the new process is to
exec a hew program (step 2 at the end of the previous section). The bare-bones shell in the program
from Figure 1.7 is also an example of this type of program. The vf or k function creates the new
process, just like f or k, without copying the address space of the parent into the child, as the child
won't reference that address space; the child simply calls exec (or exi t) right after the vf or k.
Instead, while the child is running and until it calls either exec or exi t, the child runs in the address
space of the parent. This optimization provides an efficiency gain on some paged virtual-memory
implementations of the UNIX System. (As we mentioned in the previous section, implementations use
copy-on-write to improve the efficiency of a f or k followed by an exec, but no copying is still faster
than some copying.)

Another difference between the two functions is that vf or k guarantees that the child runs first, until
the child calls exec or exi t . When the child calls either of these functions, the parent resumes. (This
can lead to deadlock if the child depends on further actions of the parent before calling either of these
two functions.)

Example

The program in Figure 8.3 is a modified version of the program from Figure 8.1. We've replaced the
call to f or k with vf ork and removed the wri t e to standard output. Also, we don't need to have the
parent call sl eep, as we're guaranteed that it is put to sleep by the kernel until the child calls either
exec or exit.

Running this program gives us

$ ./a.out
bef ore vfork
pid = 29039, glob = 7, var = 89

Here, the incrementing of the variables done by the child changes the values in the parent. Because
the child runs in the address space of the parent, this doesn't surprise us. This behavior, however,
differs from f or k.



Note in Figure 8.3 that we call _exit instead of exi t . As we described in Section 7.3, _exit does not
perform any flushing of standard 1/0 buffers. If we call exi t instead, the results are indeterminate.
Depending on the implementation of the standard 1/0 library, we might see no difference in the
output, or we might find that the output from the parent's pri ntf has disappeared.

If the child calls exi t , the implementation flushes the standard 1/0 streams. If this is the only action
taken by the library, then we will see no difference with the output generated if the child called _exit.
If the implementation also closes the standard 1/0 streams, however, the memory representing the
FI LE object for the standard output will be cleared out. Because the child is borrowing the parent's
address space, when the parent resumes and calls pri nt f, no output will appear and pri ntf will
return -1. Note that the parent's STDOUT_FI LENO is still valid, as the child gets a copy of the parent's
file descriptor array (refer back to Figure 8.2).

Most modern implementations of exi t will not bother to close the streams. Because the process
is about to exit, the kernel will close all the file descriptors open in the process. Closing them in
the library simply adds overhead without any benefit.

Figure 8.3. Example of vfork function

#1 ncl ude "apue. h"

i nt gl ob = 6; /* external variable in initialized data */
i nt
mai n(voi d)
{
i nt var; /* automatic variable on the stack */
pid t pi d;
var = 88;
printf("before vfork\n"); /* we don't flush stdio */
if ((pid = vfork()) < 0) {
err_sys("vfork error");
} else if (pid==0) { [* child */
gl ob++; /* nodify parent's variables */
var ++;
_exit(0); /[* child term nates */
}
/-k
* Parent continues here.
*/
printf("pid = %, glob = %, var = %l\n", getpid(), glob, var);
exit(0);
}

Section 5.6 of McKusick et al. [1996] contains additional information on the implementation issues of
fork and vfork. Exercises 8.1 and 8.2 continue the discussion of vf or k.
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8.5. exi t Functions

As we described in Section 7.3, a process can terminate normally in five ways:

Executing a r et urn from the mai n function. As we saw in Section 7.3, this is equivalent to calling
exit.

Calling the exi t function. This function is defined by ISO C and includes the calling of all exit
handlers that have been registered by calling at exi t and closing all standard 1/0 streams.
Because 1SO C does not deal with file descriptors, multiple processes (parents and children),
and job control, the definition of this function is incomplete for a UNIX system.

Calling the _exit or _Exit function. ISO C defines _Exit to provide a way for a process to
terminate without running exit handlers or signal handlers. Whether or not standard 1/0
streams are flushed depends on the implementation. On UNIX systems, Exit and _exit are
synonymous and do not flush standard 1/0 streams. The _exit function is called by exi t and
handles the UNIX system-specific details; _exit is specified by POSIX.1.

In most UNIX system implementations, exi t (3) is a function in the standard C library,
whereas _exi t (2) is a system call.

Executing a r et urn from the start routine of the last thread in the process. The return value of
the thread is not used as the return value of the process, however. When the last thread
returns from its start routine, the process exits with a termination status of O.

Calling the pt hread_exi t function from the last thread in the process. As with the previous case,
the exit status of the process in this situation is always 0O, regardless of the argument passed to
pt hread_exi t . We'll say more about pt hread_exi t in Section 11.5.

The three forms of abnormal termination are as follows:

1. Calling abort . This is a special case of the next item, as it generates the S| GABRT signal.

2. When the process receives certain signals. (We describe signals in more detail in Chapter 10).

The signal can be generated by the process itselffor example, by calling the abort functionby
some other process, or by the kernel. Examples of signals generated by the kernel include the
process referencing a memory location not within its address space or trying to divide by 0.

The last thread responds to a cancellation request. By default, cancellation occurs in a deferred
manner: one thread requests that another be canceled, and sometime later, the target thread
terminates. We discuss cancellation requests in detail in Sections 11.5 and 12.7.

Regardless of how a process terminates, the same code in the kernel is eventually executed. This
kernel code closes all the open descriptors for the process, releases the memory that it was using,



and the like.

For any of the preceding cases, we want the terminating process to be able to notify its parent how it
terminated. For the three exit functions (exit, _exit, and _Exit), this is done by passing an exit
status as the argument to the function. In the case of an abnormal termination, however, the kernel,
not the process, generates a termination status to indicate the reason for the abnormal termination.
In any case, the parent of the process can obtain the termination status from either the wai t or the
wai t pi d function (described in the next section).

Note that we differentiate between the exit status, which is the argument to one of the three exit
functions or the return value from nai n, and the termination status. The exit status is converted into
a termination status by the kernel when _exi t is finally called (recall Figure 7.2). Figure 8.4 describes
the various ways the parent can examine the termination status of a child. If the child terminated
normally, the parent can obtain the exit status of the child.

Figure 8.4. Macros to examine the termination status returned by wai t
and wai t pi d

Macro Description

W FEXI TED(status) True if status was returned for a child that terminated normally. In this
case, we can execute

WVEXI TSTATUS (status)

to fetch the low-order 8 bits of the argument that the child passed to
exit, _exit,or _Exit.

W FSI GNALED (status) True if status was returned for a child that terminated abnormally, by
receipt of a signal that it didn't catch. In this case, we can execute

WIERMSI G (status)
to fetch the signal number that caused the termination.

Additionally, some implementations (but not the Single UNIX
Specification) define the macro

WCOREDUMP (status)

that returns true if a core file of the terminated process was generated.

W FSTOPPED (status) True if status was returned for a child that is currently stopped. In this
case, we can execute

WSTOPSI G (status)

to fetch the signal number that caused the child to stop.

W FCONTI NUED (status) | True if status was returned for a child that has been continued after a job
control stop (XSl extension to POSIX.1; wai t pi d only).




When we described the f or k function, it was obvious that the child has a parent process after the call
to f or k. Now we're talking about returning a termination status to the parent. But what happens if
the parent terminates before the child? The answer is that the i nit process becomes the parent
process of any process whose parent terminates. We say that the process has been inherited by

i ni t. What normally happens is that whenever a process terminates, the kernel goes through all
active processes to see whether the terminating process is the parent of any process that still exists.
If so, the parent process ID of the surviving process is changed to be 1 (the process ID of i nit). This
way, we're guaranteed that every process has a parent.

Another condition we have to worry about is when a child terminates before its parent. If the child
completely disappeared, the parent wouldn't be able to fetch its termination status when and if the
parent were finally ready to check if the child had terminated. The kernel keeps a small amount of
information for every terminating process, so that the information is available when the parent of the
terminating process calls wai t or wai t pi d. Minimally, this information consists of the process ID, the
termination status of the process, and the amount of CPU time taken by the process. The kernel can
discard all the memory used by the process and close its open files. In UNIX System terminology, a
process that has terminated, but whose parent has not yet waited for it, is called a zombie. The ps(1)
command prints the state of a zombie process as Z. If we write a long-running program that f or ks
many child processes, they become zombies unless we wait for them and fetch their termination
status.

Some systems provide ways to prevent the creation of zombies, as we describe in Section 10.7.

The final condition to consider is this: what happens when a process that has been inherited by i ni t
terminates? Does it become a zombie? The answer is "no," because i ni t is written so that whenever
one of its children terminates, i ni t calls one of the wai t functions to fetch the termination status. By
doing this, i nit prevents the system from being clogged by zombies. When we say "one of i nit's
children,” we mean either a process that i nit generates directly (such as getty, which we describe in
Section 9.2) or a process whose parent has terminated and has been subsequently inherited by i nit.
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8.6. wai t and wai t pi d Functions

When a process terminates, either normally or abnormally, the kernel notifies the parent by sending
the SI GCHLD signal to the parent. Because the termination of a child is an asynchronous eventit can
happen at any time while the parent is runningthis signal is the asynchronous notification from the
kernel to the parent. The parent can choose to ignore this signal, or it can provide a function that is
called when the signal occurs: a signal handler. The default action for this signal is to be ignored. We
describe these options in Chapter 10. For now, we need to be aware that a process that calls wai t or
wai t pi d can

e Block, if all of its children are still running

¢ Return immediately with the termination status of a child, if a child has terminated and is
waiting for its termination status to be fetched

¢ Return immediately with an error, if it doesn't have any child processes

If the process is calling wai t because it received the SI GCHLD signal, we expect wai t to return
immediately. But if we call it at any random point in time, it can block.

#i ncl ude <sys/wait.h>
pid_t wait(int *statloc);

pid t waitpid(pid_t pid, int *statloc, int options);

Both return: process ID if OK, O (see later), or 1 on error

The differences between these two functions are as follows.

e The wai t function can block the caller until a child process terminates, whereas wai t pi d has an
option that prevents it from blocking.

e The wai t pi d function doesn't wait for the child that terminates first; it has a number of options
that control which process it waits for.

If a child has already terminated and is a zombie, wai t returns immediately with that child's status.
Otherwise, it blocks the caller until a child terminates. If the caller blocks and has multiple children,
wai t returns when one terminates. We can always tell which child terminated, because the process
ID is returned by the function.



For both functions, the argument statloc is a pointer to an integer. If this argument is not a null
pointer, the termination status of the terminated process is stored in the location pointed to by the
argument. If we don't care about the termination status, we simply pass a null pointer as this
argument.

Traditionally, the integer status that these two functions return has been defined by the
implementation, with certain bits indicating the exit status (for a normal return), other bits indicating
the signal number (for an abnormal return), one bit to indicate whether a core file was generated,
and so on. POSIX.1 specifies that the termination status is to be looked at using various macros that
are defined in <sys/ wai t . h>. Four mutually exclusive macros tell us how the process terminated, and
they all begin with W F. Based on which of these four macros is true, other macros are used to obtain
the exit status, signal number, and the like. The four mutually-exclusive macros are shown in Figure
8.4.

We'll discuss how a process can be stopped in Section 9.8 when we discuss job control.

Example

The function pr _exi t in Figure 8.5 uses the macros from Figure 8.4 to print a description of the
termination status. We'll call this function from numerous programs in the text. Note that this
function handles the WCOREDUMP macro, if it is defined.

FreeBSD 5.2.1, Linux 2.4.22, Mac OS X 10.3, and Solaris 9 all support the WCOREDUMP macro.

The program shown in Figure 8.6 calls the pr_exi t function, demonstrating the various values for the
termination status. If we run the program in Figure 8.6, we get

$ ./a. out

normal termnation, exit status =7

abnornal termnation, signal nunber 6 (core file generated)
abnormal termnation, signal nunber = 8 (core file generated)

Unfortunately, there is no portable way to map the signal numbers from WIERMSI G into descriptive
names. (See Section 10.21 for one method.) We have to look at the <si gnal . h> header to verify that
S| GABRT has a value of 6 and that SI GFPE has a value of 8.

Figure 8.5. Print a description of the exit status

#i ncl ude "apue. h"
#i ncl ude <sys/wait.h>

voi d
pr_exit(int status)
{
i f (WFEXI TED( st at us))
printf("normal termination, exit status = %\ n",



VEXI TSTATUS( st at us) ) ;
el se if (WFSIGNALED( st at us))
printf("abnormal termnation, signal nunber = %%\n",
WIERMSI G st at us) ,
#i f def  WCOREDUMP
WCOREDUMP(status) ? " (core file generated)" : "");
#el se

")
#endi f
el se if (W FSTOPPED(st atus))
printf("child stopped, signal nunber = %il\n",
WSTOPSI G st at us) ) ;

Figure 8.6. Demonstrate various exit statuses

#i ncl ude "apue. h"
#i nclude <sys/wait.h>

i nt
mai n(voi d)
{
pid_t pi d;
i nt st at us;
if ((pid =fork()) < 0)
err_sys("fork error");
else if (pid == 0) /[* child */
exit(7);
if (wait(&status) !'= pid) [* wait for child */
err_sys("wait error");
pr_exit(status); [* and print its status */
if ((pid=fork()) < 0)
err_sys("fork error");
else if (pid == 0) /* child */
abort(); /* generates S| GABRT */
if (wait(&status) !'= pid) [* wait for child */
err_sys("wait error");
pr_exit(status); /[* and print its status */

if ((pid=fork()) < 0)
err_sys("fork error");
else if (pid == 0) [* child */
status /= 0O; /* divide by 0 generates S| G-PE */



if (wait(&status) !'= pid) [* wait for child */
err_sys("wait error");
pr_exit(status); [* and print its status */

exit(0);

As we mentioned, if we have more than one child, wai t returns on termination of any of the children.
What if we want to wait for a specific process to terminate (assuming we know which process ID we
want to wait for)? In older versions of the UNIX System, we would have to call wai t and compare the
returned process ID with the one we're interested in. If the terminated process wasn't the one we
wanted, we would have to save the process ID and termination status and call wai t again. We would
need to continue doing this until the desired process terminated. The next time we wanted to wait for
a specific process, we would go through the list of already terminated processes to see whether we
had already waited for it, and if not, call wai t again. What we need is a function that waits for a
specific process. This functionality (and more) is provided by the POSIX.1 wai t pi d function.

The interpretation of the pid argument for wai t pi d depends on its value:

pid==1 Waits for any child process. In this respect, wai t pi d is equivalent to wai t .
pid > 0 Waits for the child whose process ID equals pid.
pid == Waits for any child whose process group ID equals that of the calling process.

(We discuss process groups in Section 9.4.)

pid < 1 Waits for any child whose process group ID equals the absolute value of pid.

The wai t pi d function returns the process ID of the child that terminated and stores the child's
termination status in the memory location pointed to by statloc. With wai t , the only real error is if the
calling process has no children. (Another error return is possible, in case the function call is
interrupted by a signal. We'll discuss this in Chapter 10.) With wai t pi d, however, it's also possible to
get an error if the specified process or process group does not exist or is not a child of the calling
process.

The options argument lets us further control the operation of wai t pi d. This argument is either O or is
constructed from the bitwise OR of the constants in Figure 8.7.

Figure 8.7. The options constants for wai t pi d

Constant Description

WCONTI NUED If the implementation supports job control, the status of any child specified by
pid that has been continued after being stopped, but whose status has not yet
been reported, is returned (XSl extension to POSIX.1).




Constant Description

VWNOHANG The wai t pi d function will not block if a child specified by pid is not immediately
available. In this case, the return value is O.

WUNTRACED If the implementation supports job control, the status of any child specified by
pid that has stopped, and whose status has not been reported since it has
stopped, is returned. The W FSTOPPED macro determines whether the return
value corresponds to a stopped child process.

Solaris supports one additional, but nonstandard, option constant. WWOMI T has the system keep
the process whose termination status is returned by wai t pi d in a wait state, so that it may be
waited for again.

The wai t pi d function provides three features that aren't provided by the wai t function.

1. The wai t pi d function lets us wait for one particular process, whereas the wai t function returns
the status of any terminated child. We'll return to this feature when we discuss the popen
function.

2. The wai t pi d function provides a nonblocking version of wai t . There are times when we want to
fetch a child's status, but we don't want to block.

3. The wai t pi d function provides support for job control with the WUNt r ACED and WCONTI NUED
options.

Example

Recall our discussion in Section 8.5 about zombie processes. If we want to write a process so that it
f or ks a child but we don't want to wait for the child to complete and we don't want the child to
become a zombie until we terminate, the trick is to call f or k twice. The program in Figure 8.8 does
this.

We call sl eep in the second child to ensure that the first child terminates before printing the parent
process ID. After a f or k, either the parent or the child can continue executing; we never know which
will resume execution first. If we didn't put the second child to sleep, and if it resumed execution
after the f or k before its parent, the parent process ID that it printed would be that of its parent, not
process ID 1.

Executing the program in Figure 8.8 gives us

$ ./a.out
$ second child, parent pid =1

Note that the shell prints its prompt when the original process terminates, which is before the second



child prints its parent process ID.

Figure 8.8. Avoid zombie processes by calling fork twice

#i ncl ude "apue. h"
#i ncl ude <sys/wait.h>

i nt
mai n(voi d)
{
pid t pi d;
if ((pid=fork()) < 0) {
err_sys("fork error");
} elseif (pid == 0) { [* first child */
if ((pid=fork()) < 0)
err_sys("fork error");
else if (pid > 0)
exit(0); /* parent from second fork == first child */
/*
* W're the second child; our parent becones init as soon
* as our real parent calls exit() in the statenent above.
* Here's where we'd continue executing, knowi ng that when
* we're done, init will reap our status.
*/
sl eep(2);
printf("second child, parent pid = %\n", getppid());
exit(0);
}
if (waitpid(pid, NULL, O) !'= pid) /* wait for first child */
err_sys("waitpid error");
/*
* W're the parent (the original process); we continue executing,
* knowi ng that we're not the parent of the second child.
*/
exit(0);
}
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8.7.wai ti d Function

The XSl extension of the Single UNIX Specification includes an additional function to retrieve the exit
status of a process. The wai ti d function is similar to wai t pi d, but provides extra flexibility.

View full width

#i ncl ude <sys/wait.h>

int waitid(idtype t idtype, id_t id, siginfo_t
™ infop, int options) ;

Returns: O if OK, 1 on error

Like wai t pi d, wai ti d allows a process to specify which children to wait for. Instead of encoding this
information in a single argument combined with the process ID or process group ID, two separate
arguments are used. The id parameter is interpreted based on the value of idtype. The types
supported are summarized in Figure 8.9.

Figure 8.9. The idtype constants for wai tid

Constant Description
P_PID Wait for a particular process: id contains the process ID of the child to wait for.
P_PG D Wait for any child process in a particular process group: id contains the process

group ID of the children to wait for.

P _ALL Wait for any child process: id is ignored.

The options argument is a bitwise OR of the flags shown in Figure 8.10. These flags indicate which
state changes the caller is interested in.

Figure 8.10. The options constants for wai ti d



Constant Description

WCONTI NUED Wait for a process that has previously stopped and has been continued, and
whose status has not yet been reported.

VEXI TED Wait for processes that have exited.

VINOHANG Return immediately instead of blocking if there is no child exit status available.

VNOWAI T Don't destroy the child exit status. The child's exit status can be retrieved by a
subsequent call to wai t , wai ti d,or wai t pi d.

WBTOPPED Wait for a process that has stopped and whose status has not yet been
reported.

The infop argument is a pointer to a si gi nf o structure. This structure contains detailed information
about the signal generated that caused the state change in the child process. The si gi nf o structure is
discussed further in Section 10.14.

Of the four platforms covered in this book, only Solaris provides support for wai ti d.
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8.8. wai t 3 and wai t 4 Functions

Most UNIX system implementations provide two additional functions: wai t 3 and wai t 4. Historically,
these two variants descend from the BSD branch of the UNIX System. The only feature provided by
these two functions that isn't provided by the wai t , wai ti d, and wai t pi d functions is an additional
argument that allows the kernel to return a summary of the resources used by the terminated
process and all its child processes.

View full width

#i ncl ude <sys/types. h>
#i ncl ude <sys/wait.h>
#i ncl ude <sys/tine. h>
#i ncl ude <sys/resource. h>

pid_t wait3(int *statloc, int options, struct
™ usage *rusage);

pidt wait4(pid_t pid, int *satloc, int options,
™.truct rusage *rusage);

Both return: process ID if OK, O, or 1 on error

The resource information includes such statistics as the amount of user CPU time, the amount of
system CPU time, number of page faults, number of signals received, and the like. Refer to the
geTRusage(2) manual page for additional details. (This resource information differs from the resource
limits we described in Section 7.11.) Figure 8.11 details the various arguments supported by the wai t
functions.

Figure 8.11. Arguments supported by wait functions on various systems

Free BSD Linux Mac OSX

Function pid options rusage POSIX.1 5921 5422 10.3 Solaris 9

wai t ° e e ° °

wai tid - - XSl o




Function pid options | rusage POSIX.1 Fr?ffD 2LI2u2X2 MiCO%SX Solaris 9
wai t pi d - - - - . - -
wai t 3 - - - - - -
wait4 - - o - o - -

The wai t 3 function was included in earlier versions of the Single UNIX Specification. In Version
2, wai t 3 was moved to the legacy category; wai t 3 was removed from the specification in
Version 3.

e rrcy | nexr




=TeTe e prev | nexr o

8.9. Race Conditions

For our purposes, a race condition occurs when multiple processes are trying to do something with
shared data and the final outcome depends on the order in which the processes run. The fork
function is a lively breeding ground for race conditions, if any of the logic after the f or k either
explicitly or implicitly depends on whether the parent or child runs first after the f ork. In general, we
cannot predict which process runs first. Even if we knew which process would run first, what happens
after that process starts running depends on the system load and the kernel's scheduling algorithm.

We saw a potential race condition in the program in Figure 8.8 when the second child printed its
parent process ID. If the second child runs before the first child, then its parent process will be the
first child. But if the first child runs first and has enough time to exi t , then the parent process of the
second child is i ni t . Even calling sl eep, as we did, guarantees nothing. If the system was heavily
loaded, the second child could resume after sl eep returns, before the first child has a chance to run.
Problems of this form can be difficult to debug because they tend to work "most of the time."

A process that wants to wait for a child to terminate must call one of the wai t functions. If a process
wants to wait for its parent to terminate, as in the program from Figure 8.8, a loop of the following
form could be used:

while (getppid() '= 1)
sleep(1);

The problem with this type of loop, called polling, is that it wastes CPU time, as the caller is
awakened every second to test the condition.

To avoid race conditions and to avoid polling, some form of signaling is required between multiple
processes. Signals can be used, and we describe one way to do this in Section 10.16. Various forms
of interprocess communication (IPC) can also be used. We'll discuss some of these in Chapters 15
and 17.

For a parent and child relationship, we often have the following scenario. After the f or k, both the
parent and the child have something to do. For example, the parent could update a record in a log
file with the child's process ID, and the child might have to create a file for the parent. In this
example, we require that each process tell the other when it has finished its initial set of operations,
and that each wait for the other to complete, before heading off on its own. The following code
illustrates this scenario:

#i nclude "apue.h"
TELL_WAI T() ; /* set things up for TELL xxx & WAI T_xxx */

if ((pid = fork()) < 0) {



err_sys("fork error");

} elseif (pid==0) { [* child */
/* child does whatever is necessary ... */
TELL_PARENT( get ppi d()); /* tell parent we're done */
WAl T_PARENT() ; /* and wait for parent */
/* and the child continues onits way ... */
exit(0);

}

/* parent does whatever is necessary ... */

TELL _CHI LD( pi d); /* tell child we're done */

VWAI T_CHI LX) ; /[* and wait for child */

/* and the parent continues on its way ... */

exit(0);

We assume that the header apue. h defines whatever variables are required. The five routines
TELL_WAI T, TELL_PARENT, TELL_CHI LD, WAl T_PARENT, and WAI T_CHI LD can be either macros or functions.

We'll show various ways to implement these TELL and WAI T routines in later chapters: Section 10.16
shows an implementation using signals; Figure 15.7 shows an implementation using pipes. Let's look
at an example that uses these five routines.

Example

The program in Figure 8.12 outputs two strings: one from the child and one from the parent. The
program contains a race condition because the output depends on the order in which the processes
are run by the kernel and for how long each process runs.

We set the standard output unbuffered, so every character output generates a wi t e. The goal in this
example is to allow the kernel to switch between the two processes as often as possible to
demonstrate the race condition. (If we didn't do this, we might never see the type of output that
follows. Not seeing the erroneous output doesn't mean that the race condition doesn't exist; it simply
means that we can't see it on this particular system.) The following actual output shows how the
results can vary:

$ ./a.out

ooutput fromchild
ut put from parent
$ ./a.out

ooutput fromchild
ut put from parent



$ ./a.out
output fromchild
out put from parent

We need to change the program in Figure 8.12 to use the TELL and WAI T functions. The program in
Figure 8.13 does this. The lines preceded by a plus sign are new lines.

When we run this program, the output is as we expect; there is no intermixing of output from the
two processes.

In the program shown in Figure 8.13, the parent goes first. The child goes first if we change the lines

following the f ork to be

} else if (pid == 0) {
charatatine("output fromchild\n");
TELL_PARENT(get ppi d());

} else {
WAI T_CHI LD(); /* child goes first */
charatatine("output from parent\n");

Exercise 8.3 continues this example.

Figure 8.12. Program with a race condition

#i ncl ude "apue. h"

static void charatatine(char *);

i nt
mai n(voi d)
{
pid_t pi d;
if ((pid =fork()) <0) {
err_sys("fork error");
} elseif (pid == 0) {
charatatine("output fromchild\n");
} else {
charatatine("output from parent\n");
}
exit(0);
}

static void



charatati ne(char *str)

{
char *ptr;
i nt c;
set buf (stdout, NULL); /* set unbuffered */
for (ptr = str; (c = *ptr++) = 0; )
putc(c, stdout);
}

Figure 8.13. Modification of Figure 8.12 to avoid race condition

#i ncl ude "apue. h"

static void charatatinme(char *);

i nt
mai n( voi d)
{
pid_t pi d;
+ TELL_WAI T() ;
+
if ((pid =fork()) < 0) {
err_sys("fork error");
} elseif (pid == 0) {
+ WAI T_PARENT() ; /* parent goes first */
charatatime("output fromchild\in");
} else {
charatatinme("output fromparent\n");
+ TELL_CHI LD( pi d) ;
}
exit(0);
}

static void
charatatine(char *str)

{
char *ptr;
i nt c;
set buf (stdout, NULL); /* set unbuffered */
for (ptr = str; (c = *ptr++) !'=0; )
putc(c, stdout);
}
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8.10. exec Functions

We mentioned in Section 8.3 that one use of the f or k function is to create a new process (the child)
that then causes another program to be executed by calling one of the exec functions. When a
process calls one of the exec functions, that process is completely replaced by the new program, and
the new program starts executing at its mai n function. The process ID does not change across an
exec, because a new process is not created; exec merely replaces the current processits text, data,
heap, and stack segmentswith a brand new program from disk.

There are six different exec functions, but we'll often simply refer to "the exec function," which means
that we could use any of the six functions. These six functions round out the UNIX System process
control primitives. With f ork, we can create new processes; and with the exec functions, we can
initiate new programs. The exit function and the wai t functions handle termination and waiting for
termination. These are the only process control primitives we need. We'll use these primitives in later
sections to build additional functions, such as popen and system

View full width

#i ncl ude <uni std. h>

i nt execl (const char *pathname, const char *arg0,
= . /* (char *)0 */ );

i nt execv(const char *pathname, char *const argv []);

i nt execl e(const char *pathname, const char *argO,
/* (char *)0, char *const envp[] */ );

i nt execve(const char *pathname, char *const
=rgv[], char *const envp []);

i nt execl p(const char *filename, const char *arg0,
= . /* (char *)0 */ );

i nt execvp(const char *filename, char *const argv []);

All six return: 1 on error, no return on SUCCesS

The first difference in these functions is that the first four take a pathname argument, whereas the
last two take a filename argument. When a filename argument is specified

e If filename contains a slash, it is taken as a pathname.



e Otherwise, the executable file is searched for in the directories specified by the PATH
environment variable.

The PATH variable contains a list of directories, called path prefixes, that are separated by colons. For
example, the name=value environment string

PATH=/ bi n: /usr/bin:/usr/local/bin/:.

specifies four directories to search. The last path prefix specifies the current directory. (A zero-length
prefix also means the current directory. It can be specified as a colon at the beginning of the value,
two colons in a row, or a colon at the end of the value.)

There are security reasons for never including the current directory in the search path. See
Garfinkel et al. [2003].

If either execl p or execvp finds an executable file using one of the path prefixes, but the file isn't a
machine executable that was generated by the link editor, the function assumes that the file is a shell
script and tries to invoke / bi n/ sh with the filename as input to the shell.

The next difference concerns the passing of the argument list (I stands for list and v stands for
vector). The functions execl , execl p, and execl e require each of the command-line arguments to the
new program to be specified as separate arguments. We mark the end of the arguments with a null
pointer. For the other three functions (execv, execvp, and execve), we have to build an array of
pointers to the arguments, and the address of this array is the argument to these three functions.

Before using ISO C prototypes, the normal way to show the command-line arguments for the three
functions execl , execl e, and execl p was

char *arg0, char *argl, ..., char *argn, (char *)O

This specifically shows that the final command-line argument is followed by a null pointer. If this null
pointer is specified by the constant 0, we must explicitly cast it to a pointer; if we don't, it's
interpreted as an integer argument. If the size of an integer is different from the size of a char *, the
actual arguments to the exec function will be wrong.

The final difference is the passing of the environment list to the new program. The two functions
whose names end in an e (execl e and execve) allow us to pass a pointer to an array of pointers to
the environment strings. The other four functions, however, use the envi r on variable in the calling
process to copy the existing environment for the new program. (Recall our discussion of the
environment strings in Section 7.9 and Figure 7.8. We mentioned that if the system supported such
functions as set env and put env, we could change the current environment and the environment of
any subsequent child processes, but we couldn't affect the environment of the parent process.)
Normally, a process allows its environment to be propagated to its children, but in some cases, a
process wants to specify a certain environment for a child. One example of the latter is the | ogi n
program when a new login shell is initiated. Normally, | ogi n creates a specific environment with only
a few variables defined and lets us, through the shell start-up file, add variables to the environment
when we log in.




Before using ISO C prototypes, the arguments to execl e were shown as

char *pathname, char *arg0, ..., char *argn, (char *)0, char *envp[]

This specifically shows that the final argument is the address of the array of character pointers to the
environment strings. The ISO C prototype doesn't show this, as all the command-line arguments, the
null pointer, and the envp pointer are shown with the ellipsis notation (. . .).

The arguments for these six exec functions are difficult to remember. The letters in the function
names help somewhat. The letter p means that the function takes a filename argument and uses the
PATH environment variable to find the executable file. The letter | means that the function takes a list
of arguments and is mutually exclusive with the letter v, which means that it takes an argv[] vector.
Finally, the letter e means that the function takes an envp[] array instead of using the current
environment. Figure 8.14 shows the differences among these six functions.

Figure 8.14. Differences among the six exec functions

Function | pathname | filename | Arg list argv[] |environ| envp[]
execl e - -

execl p - - .

execl e - - -
execv - - -

execvp . - .

execve . - .
(letter p | v e

in

name)

Every system has a limit on the total size of the argument list and the environment list. From Section
2.5.2 and Figure 2.8, this limit is given by ARG_MAX. This value must be at least 4,096 bytes on a
POSIX.1 system. We sometimes encounter this limit when using the shell's filename expansion
feature to generate a list of filenames. On some systems, for example, the command

grep getrlimt /usr/share/ man/*/*



can generate a shell error of the form

Argurment |ist too |ong

Historically, the limit in older System V implementations was 5,120 bytes. Older BSD systems
had a limit of 20,480 bytes. The limit in current systems is much higher. (See the output from
the program in Figure 2.13, which is summarized in Figure 2.14.)

To get around the limitation in argument list size, we can use the xar gs(1) command to break up

long argument lists. To look for all the occurrences of geTR i nit in the man pages on our system, we
could use

find /usr/share/man -type f -print | xargs grep getrlimt

If the man pages on our system are compressed, however, we could try

find /usr/share/man -type f -print | xargs bzgrep getrlimt

We use the type -f option to the fi nd command to restrict the list to contain only regular files,
because the grep commands can't search for patterns in directories, and we want to avoid
unnecessary error messages.

We've mentioned that the process ID does not change after an exec, but the new program inherits
additional properties from the calling process:

Process ID and parent process ID
e Real user ID and real group ID

e Supplementary group IDs

e Process group ID

e Session ID

e Controlling terminal

e Time left until alarm clock

e Current working directory

e Root directory

¢ File mode creation mask



e File locks

e Process signal mask

e Pending signals

e Resource limits

e Valuesfortns_utine,tns_stinme,tns_cutinme, and tns_cstinme

The handling of open files depends on the value of the close-on-exec flag for each descriptor. Recall
from Figure 3.6 and our mention of the FD_CLOEXEC flag in Section 3.14 that every open descriptor in
a process has a close-on-exec flag. If this flag is set, the descriptor is closed across an exec.
Otherwise, the descriptor is left open across the exec. The default is to leave the descriptor open
across the exec unless we specifically set the close-on-exec flag using fcnt | .

POSIX.1 specifically requires that open directory streams (recall the opendi r function from Section
4.21) be closed across an exec. This is normally done by the opendi r function calling fcnt| to set the
close-on-exec flag for the descriptor corresponding to the open directory stream.

Note that the real user ID and the real group ID remain the same across the exec, but the effective
IDs can change, depending on the status of the set-user-1D and the set- group-ID bits for the
program file that is executed. If the set-user-ID bit is set for the new program, the effective user ID
becomes the owner ID of the program file. Otherwise, the effective user ID is not changed (it's not
set to the real user ID). The group ID is handled in the same way.

In many UNIX system implementations, only one of these six functions, execve, is a system call
within the kernel. The other five are just library functions that eventually invoke this system call. We
can illustrate the relationship among these six functions as shown in Figure 8.15.

Figure 8.15. Relationship of the six exec functions
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In this arrangement, the library functions execl p and execvp process the PATH environment variable,
looking for the first path prefix that contains an executable file named filename.

Example

The program in Figure 8.16 demonstrates the exec functions.



We first call execl e, which requires a pathname and a specific environment. The next call is to

execl p, which uses a filename and passes the caller's environment to the new program. The only
reason the call to execl p works is that the directory / hone/ sar/ bi n is one of the current path
prefixes. Note also that we set the first argument, ar gv[ 0] in the new program, to be the filename
component of the pathname. Some shells set this argument to be the complete pathname. This is a
convention only. We can set ar gv[ 0] to any string we like. The | ogi n command does this when it
executes the shell. Before executing the shell, | ogi n adds a dash as a prefix to argv[ 0] to indicate to
the shell that it is being invoked as a login shell. A login shell will execute the start-up profile
commands, whereas a nonlogin shell will not.

The program echoal | that is executed twice in the program in Figure 8.16 is shown in Figure 8.17. It
is a trivial program that echoes all its command-line arguments and its entire environment list.

When we execute the program from Figure 8.16, we get

$ ./a. out
argv[0]: echoall
argv[1]: nyargl
argv[2]: MY ARXR
USER=unknown
PATH=/t mp
$ argv[0]: echoall
argv[1]: only 1 arg
USER=sar
LOGNAME=s ar
SHELL=/ bi n/ bash

47 more lines that aren't shown
HOVE=/ hone/ sar

Note that the shell prompt appeared before the printing of argv[ 0] from the second exec. This is
because the parent did not wai t for this child process to finish.

Figure 8.16. Example of exec functions

#1 ncl ude "apue. h"
#i nclude <sys/wait.h>

char *env_init[] = { "USER=unknown", "PATH=/tnp", NULL };

i nt
mai n( voi d)

{
pid t pi d;

if ((pid="fork()) <0) {
err_sys("fork error");



} elseif (pid ==0) { /* specify pathnane, specify environment */
if (execle("/honel/sar/bin/echoall”, "echoall", "myargl",
"MY AR&R", (char *)0, env_init) < 0)
err_sys("execle error");

}

if (waitpid(pid, NULL, 0) < 0)
err_sys("wait error");

if ((pid="fork()) <0) {
err_sys("fork error");

} else if (pid==0) { [/* specify filenane, inherit environment */
if (execlp("echoall", "echoall", "only 1 arg", (char *)0) < 0)
err_sys("execlp error");
}
exit(0);

Figure 8.17. Echo all command-line arguments and all environment
strings

#1 ncl ude "apue. h"

i nt
mai n(int argc, char *argv[])
{
i nt i
char **ptr;
extern char **environ;
for (i =0; i < argc; i++) /* echo all command-1ine args */
printf("argv[%]: %\n", i, argv[i]);
for (ptr = environ; *ptr != 0; ptr++) /* and all env strings */
printf("%\n", *ptr);
exit(0);
}
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8.11. Changing User IDs and Group IDs

In the UNIX System, privileges, such as being able to change the system's notion of the current date,
and access control, such as being able to read or write a particular file, are based on user and group
IDs. When our programs need additional privileges or need to gain access to resources that they
currently aren't allowed to access, they need to change their user or group ID to an ID that has the
appropriate privilege or access. Similarly, when our programs need to lower their privileges or
prevent access to certain resources, they do so by changing either their user ID or group ID to an ID
without the privilege or ability access to the resource.

In general, we try to use the least-privilege model when we design our applications. Following this
model, our programs should use the least privilege necessary to accomplish any given task. This
reduces the likelihood that security can be compromised by a malicious user trying to trick our
programs into using their privileges in unintended ways.

We can set the real user ID and effective user ID with the set ui d function. Similarly, we can set the
real group ID and the effective group ID with the set gi d function.

#i ncl ude <uni std. h>
int setuid(uid_t uid);

int setgid(gid_t gid);

Both return: O if OK, 1 on error

There are rules for who can change the IDs. Let's consider only the user ID for now. (Everything we
describe for the user ID also applies to the group ID.)

1. If the process has superuser privileges, the set ui d function sets the real user ID, effective user
ID, and saved set-user-ID to uid.

2. If the process does not have superuser privileges, but uid equals either the real user ID or the
saved set-user-1ID, set ui d sets only the effective user ID to uid. The real user ID and the saved
set-user-1D are not changed.

3. If neither of these two conditions is true, errno is set to EPERM, and 1 is returned.

Here, we are assuming that _PGsI X_SAVED | DS is true. If this feature isn't provided, then delete all



preceding references to the saved set-user-ID.

The saved IDs are a mandatory feature in the 2001 version of POSIX.1. They used to be
optional in older versions of POSIX. To see whether an implementation supports this feature, an
application can test for the constant _PGOsI X_SAVED | DS at compile time or call sysconf with the

_SC _SAVED | DS argument at runtime.

We can make a few statements about the three user IDs that the kernel maintains.

1. Only a superuser process can change the real user ID. Normally, the real user ID is set by the
I ogi n(1) program when we log in and never changes. Because | ogi n is a superuser process, it
sets all three user IDs when it calls set ui d.

2. The effective user ID is set by the exec functions only if the set-user-ID bit is set for the
program file. If the set-user-ID bit is not set, the exec functions leave the effective user ID as
its current value. We can call set ui d at any time to set the effective user ID to either the real
user ID or the saved set-user-1D. Naturally, we can't set the effective user ID to any random

value.

3. The saved set-user-ID is copied from the effective user ID by exec. If the file's set-user-ID bit is
set, this copy is saved after exec stores the effective user ID from the file's user ID.

Figure 8.18 summarizes the various ways these three user IDs can be changed.

Figure 8.18. Ways to change the three user IDs

effective user ID

effective user ID

ID exec set ui d(ui d)
set-user-ID bit off | set-user-ID bit on superuser unprivileged user
real user ID unchanged unchanged set to uid unchanged
effective user ID unchanged set from user ID set to uid set to uid
of program file
saved set-user ID | copied from copied from set to uid unchanged

Note that we can obtain only the current value of the real user ID and the effective user ID with the
functions get ui d and get eui d from Section 8.2. We can't obtain the current value of the saved set-

user-ID.

Example

To see the utility of the saved set-user-ID feature, let's examine the operation of a program that
uses it. We'll look at the man(1) program, which is used to display online manual pages. The nman




program can be installed either set-user-I1D or set-group-ID to a specific user or group, usually one
reserved for man itself. The man program can be made to read and possibly overwrite files in locations
that are chosen either through a configuration file (usually / et ¢/ man. confi g or / et ¢/ manpat h. confi g)
or using a command-line option.

The man program might have to execute several other commands to process the files containing the
manual page to be displayed. To prevent being tricked into running the wrong commands or
overwriting the wrong files, the man command has to switch between two sets of privileges: those of
the user running the man command and those of the user that owns the nman executable file. The
following steps take place.

1. Assuming that the man program file is owned by the user name man and has its set-user-ID bit
set, when we exec it, we have

real user ID = our user ID
effective user ID = man
saved set-user-ID = nman

2. The man program accesses the required configuration files and manual pages. These files are
owned by the user name man, but because the effective user ID is man, file access is allowed.

3. Before man runs any command on our behalf, it calls set ui d( get ui d()) . Because we are not a
superuser process, this changes only the effective user ID. We have

real user ID = our user ID (unchanged)
effective user ID = our user ID
saved set-user-1D = man (unchanged)

Now the man process is running with our user ID as its effective user ID. This means that we can
access only the files to which we have normal access. We have no additional permissions. It can
safely execute any filter on our behalf.

4. When the filter is done, nman calls set ui d(euid) , where euid is the numerical user ID for the user
name man. (This was saved by man by calling get eui d.) This call is allowed because the argument
to set ui d equals the saved set-user-ID. (This is why we need the saved set-user-1D.) Now we
have

real user ID = our user ID (unchanged)
effective user ID = man
saved set-user-1D = man (unchanged)

5. The man program can now operate on its files, as its effective user ID is man.

By using the saved set-user-ID in this fashion, we can use the extra privileges granted to us by the
set-user-1D of the program file at the beginning of the process and at the end of the process. In
between, however, the process runs with our normal permissions. If we weren't able to switch back
to the saved set-user-ID at the end, we might be tempted to retain the extra permissions the whole
time we were running (which is asking for trouble).



Let's look at what happens if man spawns a shell for us while it is running. (The shell is spawned using
fork and exec.) Because the real user ID and the effective user ID are both our normal user ID (step
3), the shell has no extra permissions. The shell can't access the saved set-user-ID that is set to nan
while man is running, because the saved set-user-1D for the shell is copied from the effective user ID
by exec. So in the child process that does the exec, all three user IDs are our normal user ID.

Our description of how man uses the set ui d function is not correct if the program is set-user-1D to
root, because a call to set ui d with superuser privileges sets all three user IDs. For the example to
work as described, we need set ui d to set only the effective user ID.

setreui d and setregi d Functions

Historically, BSD supported the swapping of the real user ID and the effective user ID with the
setreui d function.

#i ncl ude <uni std. h>
int setreuid(uid_t ruid, uid_t euid);

int setregid(gid t rgid, gid t egid);

Both return: O if OK, 1 on error

We can supply a value of 1 for any of the arguments to indicate that the corresponding ID should
remain unchanged.

The rule is simple: an unprivileged user can always swap between the real user ID and the effective
user ID. This allows a set-user-ID program to swap to the user's normal permissions and swap back
again later for set-user-1D operations. When the saved set-user-ID feature was introduced with
POSIX.1, the rule was enhanced to also allow an unprivileged user to set its effective user ID to its
saved set-user-ID.

Both setreui d and setregi d are XSl extensions in the Single UNIX Specification. As such, all
UNIX System implementations are expected to provide support for them.

4.3BSD didn't have the saved set-user-ID feature described earlier. It used setreui d and
setregi d instead. This allowed an unprivileged user to swap back and forth between the two
values. Be aware, however, that when programs that used this feature spawned a shell, they
had to set the real user ID to the normal user ID before the exec. If they didn't do this, the real
user ID could be privileged (from the swap done by set reui d) and the shell process could call
setreui d to swap the two and assume the permissions of the more privileged user. As a
defensive programming measure to solve this problem, programs set both the real user ID and
the effective user ID to the normal user ID before the call to exec in the child.



set eui d and set egi d Functions

POSIX.1 includes the two functions set eui d and set egi d. These functions are similar to set ui d and
set gi d, but only the effective user ID or effective group ID is changed.

#i ncl ude <uni std. h>
int seteuid(uid_t ud);

int setegid(gid_t gid);

Both return: O if OK, 1 on error

An unprivileged user can set its effective user ID to either its real user ID or its saved set-user-ID.
For a privileged user, only the effective user ID is set to uid. (This differs from the set ui d function,
which changes all three user IDs.)

Figure 8.19 summarizes all the functions that we've described here that modify the three user IDs.

Figure 8.19. Summary of all the functions that set the various user IDs
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Group IDs

Everything that we've said so far in this section also applies in a similar fashion to group IDs. The
supplementary group IDs are not affected by set gi d, setregi d, or set egi d.
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8.12. Interpreter Files

All contemporary UNIX systems support interpreter files. These files are text files that begin with a
line of the form

#! pathname [ optional-argument |

The space between the exclamation point and the pathname is optional. The most common of these
interpreter files begin with the line

#!'/ bin/ sh

The pathname is normally an absolute pathname, since no special operations are performed on it
(i.e., PATH is not used). The recognition of these files is done within the kernel as part of processing
the exec system call. The actual file that gets executed by the kernel is not the interpreter file, but
the file specified by the pathname on the first line of the interpreter file. Be sure to differentiate
between the interpreter filea text file that begins with #! and the interpreter, which is specified by the
pathname on the first line of the interpreter file.

Be aware that systems place a size limit on the first line of an interpreter file. This limit includes the
#!, the pathname, the optional argument, the terminating newline, and any spaces.

On FreeBSD 5.2.1, this limit is 128 bytes. Mac OS X 10.3 extends this limit to 512 bytes. Linux
2.4.22 supports a limit of 127 bytes, whereas Solaris 9 places the limit at 1,023 bytes.

Example

Let's look at an example to see what the kernel does with the arguments to the exec function when
the file being executed is an interpreter file and the optional argument on the first line of the
interpreter file. The program in Figure 8.20 execs an interpreter file.

The following shows the contents of the one-line interpreter file that is executed and the result from
running the program in Figure 8.20:

$ cat /hone/sar/bin/testinterp
#!/ hone/ sar/ bi n/ echoarg foo

$ ./a. out

argv[0]: /hone/sar/bin/echoarg
argv[1]: foo



argv[2]: /honel/sar/bin/testinterp

argv[3]: nyargl
argv[4]: MW ARRXR

The program echoar g (the interpreter) just echoes each of its command-line arguments. (This is the
program from Figure 7.4.) Note that when the kernel execs the interpreter (/ hone/ sar/ bi n/ echoar g),
ar gv[ 0] is the pathname of the interpreter, argv[ 1] is the optional argument from the interpreter file,
and the remaining arguments are the pathname (/ hone/ sar/ bi n/testi nterp) and the second and
third arguments from the call to execl in the program shown in Figure 8.20 (nyar gl and MY ARR2).
Both argv[ 1] and ar gv[ 2] from the call to execl have been shifted right two positions. Note that the
kernel takes the pathname from the execl call instead of the first argument (t esti nt er p), on the
assumption that the pathname might contain more information than the first argument.

Figure 8.20. A program that execs an interpreter file

#i ncl ude "apue. h"
#i nclude <sys/wait.h>

i nt
mai n(voi d)
{
pid t pi d;
if ((pid="fork()) <0) {
err_sys("fork error");
} elseif (pid == 0) { /[* child */
if (execl ("/home/sar/bin/testinterp",
"testinterp", "nyargl", "MY ARR", (char *)0) < 0)
err_sys("execl error");
}
if (waitpid(pid, NULL, 0) < 0) /* parent */
err_sys("waitpid error");
exit(0);
}
Example

A common use for the optional argument following the interpreter pathname is to specify the - f
option for programs that support this option. For example, an awk (1) program can be executed as

awk -f nyfile

which tells awk to read the awk program from the file nyfil e.



Systems derived from UNIX System V often include two versions of the awk language. On these
systems, awk is often called "old awk" and corresponds to the original version distributed with
Version 7. In contrast, nawk (new awk) contains numerous enhancements and corresponds to
the language described in Aho, Kernighan, and Weinberger [1988]. This newer version provides
access to the command-line arguments, which we need for the example that follows. Solaris 9
provides both versions.

The awk program is one of the utilities included by POSIX in its 1003.2 standard, which is now
part of the base POSIX.1 specification in the Single UNIX Specification. This utility is also based
on the language described in Aho, Kernighan, and Weinberger [1988].

The version of awk in Mac OS X 10.3 is based on the Bell Laboratories version that Lucent has
placed in the public domain. FreeBSD 5.2.1 and Linux 2.4.22 ship with GNU awk, called gawk,
which is linked to the name awk. The gawk version conforms to the POSIX standard, but also
includes other extensions. Because they are more up-to-date, the version of awk from Bell
Laboratories and gawk are preferred to either nawk or old awk. (The version of awk from Bell
Laboratories is available at http://cm.bell-labs.com/cm/cs/awkbook/index.html.)

Using the -f option with an interpreter file lets us write

#!'/bin/awk -f
(awk program follows in the interpreter file)

For example, Figure 8.21 shows / usr/ | ocal / bi n/ awkexanpl e (an interpreter file).
If one of the path prefixes is / usr/| ocal / bi n, we can execute the program in Figure 8.21 (assuming

that we've turned on the execute bit for the file) as

$ awkexanple filel FILENAME2 f3
ARGV[ 0] = awk

ARGV[ 1] = filel
ARGV[ 2] = FI LENAMVE2
ARGV 3] = f3

When / bi n/ awk is executed, its command-line arguments are

/bin/awk -f /usr/local/bin/awkexanple filel FILENAME2 3

The pathname of the interpreter file (/ usr/ | ocal / bi n/ ankexanpl e) is passed to the interpreter. The
filename portion of this pathname (what we typed to the shell) isn't adequate, because the
interpreter (/ bi n/ avwk in this example) can't be expected to use the PATH variable to locate files. When
it reads the interpreter file, awk ignores the first line, since the pound sign is awk's comment
character.


http://cm.bell-labs.com/cm/cs/awkbook/index.html

We can verify these command-line arguments with the following commands:

$ /bin/su
Passwor d:

# mv [/ bin/awk /bin/awk. save

# cp /hone/sar/bin/echoarg /bin/awk

# suspend

[1] + Stopped / bin/su

$ awkexanple filel FILENAVE2 f3
argv[0]: /bin/awk

argv[1]: -f

argv[2]: /usr/local/bin/awkexanpl e
argv[3]: filel

argv[4]: FILENAMVE2

argv[5]: f3

$ fg

/ bin/su

# mv [/ bin/ awk. save [/ bi n/ ank

# exit

become superuser

enter superuser password

save the original program

and replace it temporarily

suspend the superuser shell using job control

resume superuser shell using job control

restore the original program
and exit the superuser shell

In this example, the -f option for the interpreter is required. As we said, this tells awk where to look
for the awk program. If we remove the -f option from the interpreter file, an error message usually
results when we try to run it. The exact text of the message varies, depending on where the
interpreter file is stored and whether the remaining arguments represent existing files. This is
because the command-line arguments in this case are

/ bin/awk /usr/local/bin/awkexanple filel FILENAVE2 f3

and awk is trying to interpret the string / usr/ | ocal / bi n/ ankexanpl e as an awk program. If we couldn't
pass at least a single optional argument to the interpreter (- f in this case), these interpreter files
would be usable only with the shells.

Figure 8.21. An awk program as an interpreter file

#!/bin/awk -f
BEG N {
for (i =
print
exit

0; i < ARCC, i ++)

f "ARGV[%] = %\n", i, ARGVi]



Are interpreter files required? Not really. They provide an efficiency gain for the user at some
expense in the kernel (since it's the kernel that recognizes these files). Interpreter files are useful for
the following reasons.

1. They hide that certain programs are scripts in some other language. For example, to execute
the program in Figure 8.21, we just say

awkexanpl e optional-arguments

instead of needing to know that the program is really an awk script that we would otherwise
have to execute as

awk -f awkexanpl e optional-arguments

2. Interpreter scripts provide an efficiency gain. Consider the previous example again. We could
still hide that the program is an awk script, by wrapping it in a shell script:

awk ' BEG N {
for (i =0; i < ARCC, i++)
printf "ARGV[ %] = %\n", i, ARGV[i]
exit
s

The problem with this solution is that more work is required. First, the shell reads the command
and tries to execl p the filename. Because the shell script is an executable file, but isn't a
machine executable, an error is returned, and execl p assumes that the file is a shell script
(which it is). Then / bi n/ sh is executed with the pathname of the shell script as its argument.
The shell correctly runs our script, but to run the awk program, the shell does a f or k, exec, and
wai t . Thus, there is more overhead in replacing an interpreter script with a shell script.

3. Interpreter scripts let us write shell scripts using shells other than / bi n/ sh. When it finds an
executable file that isn't a machine executable, execl p has to choose a shell to invoke, and it
always uses / bi n/ sh. Using an interpreter script, however, we can simply write

#!'/ bin/csh
(C shell script follows in the interpreter file)

Again, we could wrap this all in a / bi n/ sh script (that invokes the C shell), as we described
earlier, but more overhead is required.



None of this would work as we've shown if the three shells and awk didn't use the pound sign as their
comment character.
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8.13. syst emFunction

It is convenient to execute a command string from within a program. For example, assume that we
want to put a time-and-date stamp into a certain file. We could use the functions we describe in
Section 6.10 to do this: call ti me to get the current calendar time, then call | ocal ti me to convert it to
a broken-down time, and then call strfti ne to format the result, and write the results to the file. It is

much easier, however, to say

system("date > file");

ISO C defines the syst emfunction, but its operation is strongly system dependent. POSIX.1 includes
the syst eminterface, expanding on the ISO C definition to describe its behavior in a POSIX
environment.

#i ncl ude <stdlib. h>

i nt systen{const char *cmdstring) ;

Returns: (see below)

If cmdstring is a null pointer, syst emreturns nonzero only if a command processor is available. This
feature determines whether the syst emfunction is supported on a given operating system. Under the
UNIX System, syst emis always available.

Because syst emis implemented by calling f or k, exec, and wai t pi d, there are three types of return
values.

1. If either the f ork fails or wai t pi d returns an error other than ElI NTR, syst emreturns 1 with errno
set to indicate the error.

2. If the exec fails, implying that the shell can't be executed, the return value is as if the shell had
executed exi t (127) .

3. Otherwise, all three functionsf or k, exec, and wai t pi dsucceed, and the return value from syst em
is the termination status of the shell, in the format specified for wai t pi d.

Some older implementations of syst emreturned an error (El NTR) if wai t pi d was



interrupted by a caught signal. Because there is no cleanup strategy that an application
can use to recover from this type of error, POSIX later added the requirement that syst em
not return an error in this case. (We discuss interrupted system calls in Section 10.5.)

Figure 8.22 shows an implementation of the syst emfunction. The one feature that it doesn't handle is
signals. We'll update this function with signal handling in Section 10.18.

Figure 8.22. The syst emfunction, without signal handling

#i ncl ude <sys/wai t. h>
#i ncl ude <errno. h>
#i ncl ude <uni std. h>
i nt
systen{const char *cndstring) /* version without signal handling */
{
pid_t pi d;
i nt st at us;

if (cmdstring == NULL)
return(l); /* always a command processor with UNI X */

if ((pid = fork()) < 0) {

status = -1; /* probably out of processes */

} elseif (pid==0) { [* child */
execl ("/bin/sh", "sh", "-c", cndstring, (char *)O0);
_exit(127); /* execl error */

} else { /* parent */

while (waitpid(pid, &status, 0) < 0) {
if (errno !'= EINTR) {
status = -1; /* error other than EINTR fromwaitpid() */
br eak;

}

return(status);

The shell's - ¢ option tells it to take the next command-line argumentcmdstring, in this caseas its
command input instead of reading from standard input or from a given file. The shell parses this null-
terminated C string and breaks it up into separate command-line arguments for the command. The
actual command string that is passed to the shell can contain any valid shell commands. For
example, input and output redirection using < and > can be used.

If we didn't use the shell to execute the command, but tried to execute the command ourself, it
would be more difficult. First, we would want to call execl p instead of execl , to use the PATH variable,
like the shell. We would also have to break up the null-terminated C string into separate command-



line arguments for the call to execl p. Finally, we wouldn't be able to use any of the shell
metacharacters.

Note that we call _exit instead of exit. We do this to prevent any standard 1/0 buffers, which would
have been copied from the parent to the child across the f or k, from being flushed in the child.

We can test this version of syst emwith the program shown in Figure 8.23. (The pr_exi t function was
defined in Figure 8.5.)

Figure 8.23. Calling the syst emfunction

#1 ncl ude "apue. h"
#i nclude <sys/wait.h>

i nt
mai n(voi d)
{
i nt st at us;
if ((status = system("date")) < 0)
err_sys("system() error");
pr_exit(status);
if ((status = systen("nosuchconmand")) < 0)
err_sys("system() error");
pr_exit(status);
if ((status = system("who; exit 44")) < 0)
err_sys("system() error");
pr_exit(status);
exit(0);
}

Running the program in Figure 8.23 gives us

$ ./a.out
Sun Mar 21 18:41:32 EST 2004
normal termnation, exit status = 0 for date

sh: nosuchcommand: conmand not found
normal term nation, exit status = 127 for nosuchcommand

sar 10 Mar 18 19:45

sar pts/0 Mar 18 19:45 (:0)
sar pts/1 Mar 18 19:45 (:0)
sar pts/2 Mar 18 19:45 (:0)
sar pts/3 Mar 18 19:45 (:0)

normal term nation, exit status = 44 for exit



The advantage in using syst em instead of using f or k and exec directly, is that syst emdoes all the
required error handling and (in our next version of this function in Section 10.18) all the required
signal handling.

Earlier systems, including SVR3.2 and 4.3BSD, didn't have the wai t pi d function available. Instead,
the parent waited for the child, using a statement such as

while ((lastpid = wait(&status)) != pid & lastpid != -1)

’

A problem occurs if the process that calls syst emhas spawned its own children before calling syst em
Because the whi | e statement above keeps looping until the child that was generated by syst em
terminates, if any children of the process terminate before the process identified by pi d, then the
process ID and termination status of these other children are discarded by the whi | e statement.
Indeed, this inability to wai t for a specific child is one of the reasons given in the POSIX.1 Rationale
for including the wai t pi d function. We'll see in Section 15.3 that the same problem occurs with the
popen and pcl ose functions, if the system doesn't provide a wai t pi d function.

Set-User-ID Programs

What happens if we call syst emfrom a set-user-ID program? Doing so is a security hole and should
never be done. Figure 8.24 shows a simple program that just calls syst emfor its command-line
argument.

Figure 8.24. Execute the command-line argument using system

#i ncl ude "apue. h"

i nt
mai n(int argc, char *argv[])
{

i nt st at us;

if (argc < 2)

err_quit("command-1ine argument required");
if ((status = system(argv[1l])) < 0)
err_sys("system() error");
pr_exit(status);

exit(0);



We'll compile this program into the executable file t sys.

Figure 8.25 shows another simple program that prints its real and effective user IDs.

Figure 8.25. Print real and effective user IDs

#i ncl ude "apue. h"

i nt

mai n( voi d)

{
printf("real uid = %, effective uid = %\n", getuid(), geteuid());
exit(0);

}

We'll compile this program into the executable file pri nt ui ds. Running both programs gives us the
following:

$ tsys printuids normal execution, no special privileges
real uid = 205, effective uid = 205
normal term nation, exit status = 0

$ su become superuser

Passwor d: enter superuser password

# chown root tsys change owner

# chmod u+s tsys make set-user-1D

#1s -1 tsys verify file's permissions and owner
-rwsrwxr-x 1 root 16361 Mar 16 16:59 tsys

# exit leave superuser shell

$ tsys printuids

real uid = 205, effective uid =0 oops, thisis a security hole

nornmal termnation, exit status = 0

The superuser permissions that we gave the t sys program are retained across the f or k and exec that
are done by system

When / bi n/ sh is bash version 2, the previous example doesn't work, because bash will reset the
effective user ID to the real user ID when they don't match.

If it is running with special permissionseither set-user-I1D or set-group-IDand wants to spawn another
process, a process should use f or k and exec directly, being certain to change back to normal
permissions after the f or k, before calling exec. The syst emfunction should never be used from a set-
user-I1D or a set-group-ID program.



One reason for this admonition is that syst eminvokes the shell to parse the command string,
and the shell uses its | FS variable as the input field separator. Older versions of the shell didn't
reset this variable to a normal set of characters when invoked. This allowed a malicious user to
set | FS before syst emwas called, causing syst emto execute a different program.

=TT e rrcy | nexr



=TeTe e prev | nexr o

8.14. Process Accounting

Most UNIX systems provide an option to do process accounting. When enabled, the kernel writes an
accounting record each time a process terminates. These accounting records are typically a small
amount of binary data with the name of the command, the amount of CPU time used, the user ID
and group ID, the starting time, and so on. We'll take a closer look at these accounting records in this
section, as it gives us a chance to look at processes again and to use the fread function from Section
5.9.

Process accounting is not specified by any of the standards. Thus, all the implementations have
annoying differences. For example, the 1/0 counts maintained on Solaris 9 are in units of bytes,
whereas FreeBSD 5.2.1 and Mac OS X 10.3 maintain units of blocks, although there is no
distinction between different block sizes, making the counter effectively useless. Linux 2.4.22,
on the other hand, doesn't try to maintain 1/0 statistics at all.

Each implementation also has its own set of administrative commands to process raw
accounting data. For example, Solaris provides runacct (1m) and acct com(1), whereas FreeBSD
provides the sa(8) command to process and summarize the raw accounting data.

A function we haven't described (acct ) enables and disables process accounting. The only use of this
function is from the acct on(8) command (which happens to be one of the few similarities among
platforms). A superuser executes acct on with a pathname argument to enable accounting. The
accounting records are written to the specified file, which is usually / var/ account / acct on FreeBSD
and Mac OS X, /var/account/pacct on Linux, and /var/adm pacct on Solaris. Accounting is turned off
by executing acct on without any arguments.

The structure of the accounting records is defined in the header <sys/ acct . h> and looks something
like
typedef u_short conp_t; /* 3-bit base 8 exponent; 13-bit fraction */

struct acct

{

char ac_flag; /* flag (see Figure 8.26) */

char ac_stat; /* term nation status (signal & core flag only) */
/* (Solaris only) */

uid t ac_uid; /* real user ID */

gid t ac_gid; /* real group ID */

dev_t ac_tty; /* controlling termnal */

time_t ac_btine; /* starting calendar time */

conp_t ac_utine; /* user CPUtine (clock ticks) */

conmp_t ac_stine; [* system CPU tinme (clock ticks) */

conp_t ac_etine; /* elapsed tinme (clock ticks) */

conp_t ac_nem /* average nenory usage */

conp_t ac_io; /* bytes transferred (by read and wite) */

/* "bl ocks" on BSD systens */



conp_t ac_rw /* blocks read or witten */
/* (not present on BSD systens) */

char ac_comi8]; [/* command nane: [8] for Solaris, */
/[* [10] for Mac OS X, [16] for FreeBSD, and */
[* [17] for Linux */

The ac_f | ag member records certain events during the execution of the process. These events are
described in Figure 8.26.

Figure 8.26. Values for ac_fl ag from accounting record

ac_flag Description FreeBSD Linux Mac OS X _
521 2.4.22 10.3 Solaris 9
AFORK process is the result of f or k, but never - - - -
called exec

ASU process used superuser privileges - - -
ACOVPAT process used compatibility mode
ACORE process dumped core - - -
AXSI G process was killed by a signal - - -
AEXPND expanded accounting entry -

The data required for the accounting record, such as CPU times and number of characters
transferred, is kept by the kernel in the process table and initialized whenever a new process is
created, as in the child after a f or k. Each accounting record is written when the process terminates.
This means that the order of the records in the accounting file corresponds to the termination order
of the processes, not the order in which they were started. To know the starting order, we would
have to go through the accounting file and sort by the starting calendar time. But this isn't perfect,
since calendar times are in units of seconds (Section 1.10), and it's possible for many processes to be
started in any given second. Alternatively, the elapsed time is given in clock ticks, which are usually
between 60 and 128 ticks per second. But we don't know the ending time of a process; all we know is
its starting time and ending order. This means that even though the elapsed time is more accurate
than the starting time, we still can't reconstruct the exact starting order of various processes, given
the data in the accounting file.

The accounting records correspond to processes, not programs. A new record is initialized by the
kernel for the child after a f or k, not when a new program is executed. Although exec doesn't create a
new accounting record, the command name changes, and the AFORK flag is cleared. This means that if
we have a chain of three programsA execs B, then B execs C, and C exi t sonly a single accounting
record is written. The command name in the record corresponds to program C, but the CPU times,
for example, are the sum for programs A, B, and C.



Example

To have some accounting data to examine, we'll create a test program to implement the diagram
shown in Figure 8.27.

The source for the test program is shown in Figure 8.28. It calls f or k four times. Each child does
something different and then terminates.

We'll run the test program on Solaris and then use the program in Figure 8.29 to print out selected
fields from the accounting records.

BSD-derived platforms don't support the ac_fl ag member, so we define the HAS _SA STAT constant on
the platforms that do support this member. Basing the defined symbol on the feature instead of on
the platform reads better and allows us to modify the program simply by adding the additional
definition to our compilation command. The alternative would be to use

#if defined(BSD) || defined( MACOS)

which becomes unwieldy as we port our application to additional platforms.

We define similar constants to determine whether the platform supports the ACORE and AXSI G
accounting flags. We can't use the flag symbols themselves, because on Linux, they are defined as
enumvalues, which we can't use in a #i f def expression.

To perform our test, we do the following:

1. Become superuser and enable accounting, with the acct on command. Note that when this
command terminates, accounting should be on; therefore, the first record in the accounting file
should be from this command.

2. Exit the superuser shell and run the program in Figure 8.28. This should append six records to
the accounting file: one for the superuser shell, one for the test parent, and one for each of the
four test children.

A new process is not created by the execl in the second child. There is only a single accounting
record for the second child.

3. Become superuser and turn accounting off. Since accounting is off when this acct on command
terminates, it should not appear in the accounting file.

4. Run the program in Figure 8.29 to print the selected fields from the accounting file.

The output from step 4 follows. We have appended to each line the description of the process in
italics, for the discussion later.



accton e = 6, chars = 0, stat = 0 S

sh e = 2106, chars = 15632, stat = 0 S

dd e = 8, chars = 273344, stat = 0: second child
a. out e = 202, chars = 921, stat = 0: parent

a. out e = 407, chars = 0, stat = 134: F first child
a. out e = 600, chars = 0, stat = 9 F fourth child
a. out e = 801, chars = 0, stat = 0 F third child

The elapsed time values are measured in units of clock ticks per second. From Figure 2.14, the value
on this system is 100. For example, the sl eep(2) in the parent corresponds to the elapsed time of
202 clock ticks. For the first child, the sl eep(4) becomes 407 clock ticks. Note that the amount of
time a process sleeps is not exact. (We'll return to the sl eep function in Chapter 10.) Also, the calls
to fork and exi t take some amount of time.

Note that the ac_st at member is not the true termination status of the process, but corresponds to a
portion of the termination status that we discussed in Section 8.6. The only information in this byte is
a core-flag bit (usually the high-order bit) and the signal number (usually the seven low-order bits), if
the process terminated abnormally. If the process terminated normally, we are not able to obtain the
exi t status from the accounting file. For the first child, this value is 128 + 6. The 128 is the core flag
bit, and 6 happens to be the value on this system for S| GABRT, which is generated by the call to

abort . The value 9 for the fourth child corresponds to the value of SI &I LL. We can't tell from the
accounting data that the parent's argument to exi t was 2 and that the third child's argument to exi t
was 0.

The size of the file / et ¢/t er ncap that the dd process copies in the second child is 136,663 bytes. The
number of characters of 1/0 is just over twice this value. It is twice the value, as 136,663 bytes are
read in, then 136,663 bytes are written out. Even though the output goes to the null device, the
bytes are still accounted for.

The ac_f ag values are as we expect. The F flag is set for all the child processes except the second
child, which does the execl . The F flag is not set for the parent, because the interactive shell that
executed the parent did a f or k and then an exec of the a. out file. The first child process calls abort,
which generates a S| GABRT sighal to generate the core dump. Note that neither the X flag nor the D
flag is on, as they are not supported on Solaris; the information they represent can be derived from
the ac_st at field. The fourth child also terminates because of a signal, but the SI &I LL signal does not
generate a core dump; it only terminates the process.

As a final note, the first child has a 0 count for the number of characters of 1/0, yet this process
generated a cor e file. It appears that the 1/0 required to write the cor e file is not charged to the
process.

Figure 8.27. Process structure for accounting example
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Figure 8.28. Program to generate accounting data

#i ncl ude "apue. h"
i nt
mai n( voi d)
{
pid t pi d;

if ((pid=fork()) < 0)
err_sys("fork error");

else if (pid!=0) { [* parent */

sl eep(2);

exit(2); /* terminate with exit status 2 */
}

[* first child */
if ((pid =fork()) < 0)
err_sys("fork error");
else if (pid!=0) {
sl eep(4);
abort(); /* termnate with core dunp */

/* second child */
if ((pid = fork()) < 0)
err_sys("fork error");
else if (pid!=0) {
execl ("/bin/dd", "dd", "if=/etc/terncap", "of=/dev/null", NULL);
exit(7); /* shouldn't get here */

/[* third child */



if ((pid=fork()) < 0)
err_sys("fork error");
else if (pid!=0) {

sl eep(8);
exit(0); /[* normal exit */
}
/[* fourth child */
sl eep(6);
kill(getpid(), SIGKILL); /[* terminate w signal, no core dunp */
exit(6); /* shouldn't get here */

Figure 8.29. Print selected fields from system's accounting file

#i ncl ude "apue. h"
#i ncl ude <sys/acct.h>

#i fdef HAS _SA STAT

#define FMI "% *.*s e = %l d, chars = %ld, stat = %Bu: % % % %\n"
#el se
#define FMI "% *.*s e = %l d, chars = %ld, % % % %\n"
#endi f
#i f ndef HAS_ACORE
#define ACORE 0O
#endi f
#i f ndef HAS_AXSI G
#define AXSIG 0
#endi f
static unsigned |ong
conpt 2ul ong(conp_t conpti ne) /* convert conp_t to unsigned |ong */
{
unsi gned | ong val
i nt exp;
val = conptinme & Ox1fff; [* 13-bit fraction */
exp = (conptine >> 13) & 7; /* 3-bit exponent (0-7) */
while (exp-- > 0)
val *= 8;
return(val);
)
I nt
mai n(int argc, char *argv[])
{
struct acct acdat a

FI LE *f p;



if (argc !'= 2)
err_quit("usage: pracct filenane");
if ((fp = fopen(argv[1], "r")) == NULL)
err_sys("can't open %", argv[l1]);
while (fread(&acdata, sizeof(acdata), 1, fp) == 1) {
printf(FMI, (int)sizeof(acdata.ac_comm,
(int)sizeof (acdata.ac_com), acdata.ac_conmm
conpt 2ul ong(acdat a. ac_eti ne), conpt2ul ong(acdata. ac_i o),
#i fdef HAS_SA STAT
(unsi gned char) acdata.ac_stat,

#endi f
acdata.ac _flag & ACORE ? 'D ,
acdata.ac _flag & AXSIG ? ' X
acdata.ac _flag & AFORK ? ' F ,
acdata.ac_flag & ASU ? 'S ");
}

if (ferror(fp))
err_sys("read error");
exi t(0);
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8.15. User Identification

Any process can find out its real and effective user ID and group ID. Sometimes, however, we want
to find out the login name of the user who's running the program. We could call get pwui d(get ui d()),
but what if a single user has multiple login names, each with the same user ID? (A person might have
multiple entries in the password file with the same user ID to have a different login shell for each
entry.) The system normally keeps track of the name we log in under (Section 6.8), and the get | ogi n
function provides a way to fetch that login name.

#i ncl ude <uni std. h>

char *getl ogi n(void);

Returns: pointer to string giving login name if OK, NULL on error

This function can fail if the process is not attached to a terminal that a user logged in to. We normally
call these processes daemons. We discuss them in Chapter 13.

Given the login name, we can then use it to look up the user in the password fileto determine the
login shell, for exampleusing get pwnam

To find the login name, UNIX systems have historically called the tt ynane function (Section
18.9) and then tried to find a matching entry in the ut np file (Section 6.8). FreeBSD and Mac OS
X store the login name in the session structure associated with the process table entry and
provide system calls to fetch and store this name.

System V provided the cuseri d function to return the login name. This function called get | ogi n
and, if that failed, did a get pwui d( getui d()) . The IEEE Standard 1003.11988 specified cuseri d,
but it called for the effective user ID to be used, instead of the real user ID. The 1990 version of
POSIX.1 dropped the cuseri d function.

The environment variable LOGNAME is usually initialized with the user's login name by | ogi n(1)
and inherited by the login shell. Realize, however, that a user can modify an environment
variable, so we shouldn't use LOGNAME to validate the user in any way. Instead, get | ogi n should
be used.
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8.16. Process Times

In Section 1.10, we described three times that we can measure: wall clock time, user CPU time, and
system CPU time. Any process can call the ti mes function to obtain these values for itself and any
terminated children.

#i ncl ude <sys/times. h>

clock t times(struct tms *buf);

Returns: elapsed wall clock time in clock ticks if OK, 1 on error

This function fills in the t ns structure pointed to by buf:

struct tns {
clock t tns_utinme; /* user CPUtime */
clock t tms_stine; /[* systemCPUtine */
clock t tns_cutine; /* user CPUtinme, termnated children */
clock t tns_cstinme; /* system CPU tine, termnated children */

Note that the structure does not contain any measurement for the wall clock time. Instead, the
function returns the wall clock time as the value of the function, each time it's called. This value is
measured from some arbitrary point in the past, so we can't use its absolute value; instead, we use
its relative value. For example, we call ti nes and save the return value. At some later time, we call

ti mes again and subtract the earlier return value from the new return value. The difference is the wall
clock time. (It is possible, though unlikely, for a long-running process to overflow the wall clock time;

see Exercise 1.6.)

The two structure fields for child processes contain values only for children that we have waited for
with wai t , wai tid, or waitpid.

All the cl ock_t values returned by this function are converted to seconds using the number of clock
ticks per secondthe _SC CLK_TCK value returned by sysconf (Section 2.5.4).

Most implementations provide the geTRusage(2) function. This function returns the CPU times
and 14 other values indicating resource usage. Historically, this function originated with the BSD
operating system, so BSD-derived implementations generally support more of the fields than do



otherimplementations.

Example

The program in Figure 8.30 executes each command-line argument as a shell command string,
timing the command and printing the values from the t ns structure.

If we run this program, we get

$ ./a.out "sleep 5" "date"

command: sleep 5

real : 5.02
user: 0. 00
Sys: 0. 00
child user: 0.01
child sys: 0. 00

normal term nation, exit status = 0

conmmand: date
Mon Mar 22 00:43:58 EST 2004

real : 0.01
user: 0.00
Sys: 0. 00
child user: 0.01
child sys: 0. 00

normal term nation, exit status = 0

In these two examples, all the CPU time appears in the child process, which is where the shell and
the command execute.

Figure 8.30. Time and execute all command-line arguments

#i ncl ude "apue. h"
#i ncl ude <sys/tinmes. h>

static void pr_tines(clock t, struct tnms *, struct tns *);
static void do_cnd(char *);

i nt
mai n(int argc, char *argv[])

{



set buf (stdout, NULL);

for (i =1; i < argc; i++)
do_cmd(argv[i]); /* once for each command-line arg */
exit(0);
}
static void
do_cnd(char *cnd) /* execute and tinme the "cmd" */
{
struct tns tnestart, tnsend;
clock_t start, end;
i nt st at us;

printf("\nconmand: %\n", cnd);

if ((start = tinmes(& nestart)) == -1) /* starting values */
err_sys("tines error");

if ((status = system(cnd)) < 0) /* execute commuand */
err_sys("systen() error");

if ((end = tines(& nsend)) == -1) /* ending val ues */
err_sys("tines error");

pr_times(end-start, & nsstart, & nsend);
pr_exit(status);
}
static void
pr_times(clock t real, struct tns *tnmsstart, struct tns *tnsend)

{
static |ong clktck = 0;

if (clktck == 0) /* fetch clock ticks per second first time */

if ((clktck = sysconf(_SC CLK TCK)) < 0)

err_sys("sysconf error");

printf(" real: %.2f\n", real / (double) clktck);
printf(" user: 9%.2f\n",

(tnsend->tns_utine - tnestart->tns_utine) / (double) clktck);
printf(" sys: %/. 2f\ n",

(tnsend->tns_stine - tnsstart->tns_stinme) / (double) clktck);
printf(" child user: %, 2f\n",

(tnsend->tns_cutinme - tnestart->tns_cutine) / (double) clktck)
printf(" child sys: %. 2f\n",

(tnsend->tns_cstine - tnestart->tns_cstine) / (double) clktck)
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8.17. Summary

A thorough understanding of the UNIX System's process control is essential for advanced
programming. There are only a few functions to master: f or k, the exec family, _exit, wai t, and
wai t pi d. These primitives are used in many applications. The f or k function also gave us an
opportunity to look at race conditions.

Our examination of the syst emfunction and process accounting gave us another look at all these
process control functions. We also looked at another variation of the exec functions: interpreter files
and how they operate. An understanding of the various user IDs and group IDs that are providedreal,
effective, and savedis critical to writing safe set-user-1D programs.

Given an understanding of a single process and its children, in the next chapter we examine the
relationship of a process to other processessessions and job control. We then complete our discussion
of processes in Chapter 10 when we describe signals.
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Exercises

8.1 In Figure 8.3, we said that replacing the call to _exit with a call to exi t might cause the
standard output to be closed and printf to return -1. Modify the program to check
whether your implementation behaves this way. If it does not, how can you simulate this
behavior?

8.2 Recall the typical arrangement of memory in Figure 7.6. Because the stack frames
corresponding to each function call are usually stored in the stack, and because after a
vf or k, the child runs in the address space of the parent, what happens if the call to
vfork is from a function other than nai n and the child does a return from this function
after the vf or k? Write a test program to verify this, and draw a picture of what's
happening.

8.3 When we execute the program in Figure 8.13 one time, as in

$ ./a.out

the output is correct. But if we execute the program multiple times, one right after the
other, as in

$ ./a.out ; ./a.out ; ./a.out
out put from parent

oout put from parent

ouotuptut fromchild

put from parent

output fromchild

utput fromchild

the output is not correct. What's happening? How can we correct this? Can this problem
happen if we let the child write its output first?

8.4 In the program shown in Figure 8.20, we call execl , specifying the pathname of the
interpreter file. If we called execl p instead, specifying a filename of testi nterp, and if
the directory / hone/ sar/ bi n was a path prefix, what would be printed as ar gv[ 2] when
the program is run?

8.5 How can a process obtain its saved set-user-1D?



8.7

Write a program that creates a zombie, and then call syst emto execute the ps(1)
command to verify that the process is a zombie.

We mentioned in Section 8.10 that POSIX.1 requires that open directory streams be
closed across an exec. Verify this as follows: call opendi r for the root directory, peek at
your system's implementation of the DI R structure, and print the close-on-exec flag.
Then open the same directory for reading, and print the close-on-exec flag.
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9.1. Introduction

We learned in the previous chapter that there are relationships between processes. First, every
process has a parent process (the initial kernel-level process is usually its own parent). The parent is
notified when the child terminates, and the parent can obtain the child's exit status. We also
mentioned process groups when we described the wai t pi d function (Section 8.6) and how we can
wait for any process in a process group to terminate.

In this chapter, we'll look at process groups in more detail and the concept of sessions that was
introduced by POSIX.1. We'll also look at the relationship between the login shell that is invoked for
us when we log in and all the processes that we start from our login shell.

It is impossible to describe these relationships without talking about signals, and to talk about
signals, we need many of the concepts in this chapter. If you are unfamiliar with the UNIX System
signal mechanism, you may want to skim through Chapter 10 at this point.
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9.2. Terminal Logins

Let's start by looking at the programs that are executed when we log in to a UNIX system. In early
UNIX systems, such as Version 7, users logged in using dumb terminals that were connected to the
host with hard-wired connections. The terminals were either local (directly connected) or remote
(connected through a modem). In either case, these logins came through a terminal device driver in
the kernel. For example, the common devices on PDP-11s were DH-11s and DZ-11s. A host had a
fixed number of these terminal devices, so there was a known upper limit on the number of
simultaneous logins.

As bit-mapped graphical terminals became available, windowing systems were developed to provide
users with new ways to interact with host computers. Applications were developed to create "terminal
windows" to emulate character-based terminals, allowing users to interact with hosts in familiar ways
(i.e., via the shell command line).

Today, some platforms allow you to start a windowing system after logging in, whereas other
platforms automatically start the windowing system for you. In the latter case, you might still have to
log in, depending on how the windowing system is configured (some windowing systems can be
configured to log you in automatically).

The procedure that we now describe is used to log in to a UNIX system using a terminal. The
procedure is similar regardless of the type of terminal we useit could be a character-based terminal,
a graphical terminal emulating a simple character-based terminal, or a graphical terminal running a
windowing system.

BSD Terminal Logins

This procedure has not changed much over the past 30 years. The system administrator creates a
file, usually / et c/ t tys, that has one line per terminal device. Each line specifies the name of the
device and other parameters that are passed to the getty program. One parameter is the baud rate
of the terminal, for example. When the system is bootstrapped, the kernel creates process ID 1, the
i nit process, and itisinit that brings the system up multiuser. The i nit process reads the file
/etc/ttys and, for every terminal device that allows a login, does a f or k followed by an exec of the
program get ty. This gives us the processes shown in Figure 9.1.

Figure 9.1. Processes invoked by i nit to allow terminal logins
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All the processes shown in Figure 9.1 have a real user ID of O and an effective user ID of O (i.e., they
all have superuser privileges). The i nit process also execs the getty program with an empty
environment.

It is getty that calls open for the terminal device. The terminal is opened for reading and writing. If
the device is a modem, the open may delay inside the device driver until the modem is dialed and the
call is answered. Once the device is open, file descriptors O, 1, and 2 are set to the device. Then

get t y outputs something like | ogi n: and waits for us to enter our user name. If the terminal supports
multiple speeds, getty can detect special characters that tell it to change the terminal's speed (baud
rate). Consult your UNIX system manuals for additional details on the getty program and the data
files (get t yt ab) that can drive its actions.

When we enter our user name, getty's job is complete, and it then invokes the | ogi n program,
similar to

execl e("/bin/login", "login", "-p", username, (char *)0, envp);

(There can be options in the gettyt ab file to have it invoke other programs, but the default is the

| ogi n program.) i ni t invokes getty with an empty environment; getty creates an environment for

| ogi n (the envp argument) with the name of the terminal (something like TERV:=f oo, where the type
of terminal f oo is taken from the gett yt ab file) and any environment strings that are specified in the
gettytab. The - p flag to | ogi n tells it to preserve the environment that it is passed and to add to that
environment, not replace it. Figure 9.2 shows the state of these processes right after | ogi n has been
invoked.

Figure 9.2. State of processes after | ogi n has been invoked
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All the processes shown in Figure 9.2 have superuser privileges, since the original i nit process has
superuser privileges. The process ID of the bottom three processes in Figure 9.2 is the same, since
the process ID does not change across an exec. Also, all the processes other than the original i ni t

process have a parent process ID of 1.

The | ogi n program does many things. Since it has our user name, it can call get pwnamto fetch our
password file entry. Then | ogi n calls get pass(3) to display the prompt Passwor d: and read our
password (with echoing disabled, of course). It calls crypt (3) to encrypt the password that we
entered and compares the encrypted result to the pw_passwd field from our shadow password file
entry. If the login attempt fails because of an invalid password (after a few tries), | ogi n calls exi t
with an argument of 1. This termination will be noticed by the parent (i ni t), and it will do another
f ork followed by an exec of getty, starting the procedure over again for this terminal.

This is the traditional authentication procedure used on UNIX systems. Modern UNIX systems have
evolved to support multiple authentication procedures. For example, FreeBSD, Linux, Mac OS X, and
Solaris all support a more flexible scheme known as PAM (Pluggable Authentication Modules). PAM
allows an administrator to configure the authentication methods to be used to access services that
are written to use the PAM library.

If our application needs to verify that a user has the appropriate permission to perform a task, we
can either hard code the authentication mechanism in the application, or we can use the PAM library
to give us the equivalent functionality. The advantage to using PAM is that administrators can
configure different ways to authenticate users for different tasks, based on the local site policies.

If we log in correctly, | ogi n will

e Change to our home directory (chdir)

e Change the ownership of our terminal device (chown) so we own it



e Change the access permissions for our terminal device so we have permission to read from and
write to it

e Set our group IDs by calling set gi d and i ni t gr oups

¢ Initialize the environment with all the information that | ogi n has: our home directory (HOVE),
shell (SHELL), user name (USER and LOGNAME), and a default path (PATH)

e Change to our user ID (set ui d) and invoke our login shell, as in

execl ("/bin/sh", "-sh", (char *)0);

The minus sign as the first character of ar gv[ 0] is a flag to all the shells that they are
being invoked as a login shell. The shells can look at this character and modify their start-
up accordingly.

The | ogi n program really does more than we've described here. It optionally prints the message-of-
the-day file, checks for new mail, and performs other tasks. We're interested only in the features that
we've described.

Recall from our discussion of the set ui d function in Section 8.11 that since it is called by a superuser
process, set ui d changes all three user IDs: the real user ID, effective user ID, and saved set-user-
ID. The call to set gi d that was done earlier by | ogi n has the same effect on all three group IDs.

At this point, our login shell is running. Its parent process ID is the original i nit process (process ID
1), so when our login shell terminates, i ni t is notified (it is sent a SI GCHLD signal), and it can start
the whole procedure over again for this terminal. File descriptors O, 1, and 2 for our login shell are
set to the terminal device. Figure 9.3 shows this arrangement.

Figure 9.3. Arrangement of processes after everything is set for a
terminal login
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Our login shell now reads its start-up files (. profi |l e for the Bourne shell and Korn shell;
.bash_profile,.bash _|ogin, or.profile for the GNU Bourne-again shell; and . cshrc and . | ogi n for
the C shell). These start-up files usually change some of the environment variables and add many
additional variables to the environment. For example, most users set their own PATH and often
prompt for the actual terminal type (TERM). When the start-up files are done, we finally get the shell's
prompt and can enter commands.

hard-wired connection

Mac OS X Terminal Logins

On Mac OS X, the terminal login process follows the same steps as in the BSD login process, since
Mac OS X is based in part on FreeBSD. With Mac OS X, however, we are presented with a graphical-
based login screen from the start.

Linux Terminal Logins

The Linux login procedure is very similar to the BSD procedure. Indeed, the Linux | ogi n command is
derived from the 4.3BSD | ogi n command. The main difference between the BSD login procedure and
the Linux login procedure is in the way the terminal configuration is specified.

On Linux, / et c/i ni ttab contains the configuration information specifying the terminal devices for
which i nit should start a getty process, similar to the way it is done on System V. Depending on the
version of getty in use, the terminal characteristics are specified either on the command line (as with
agetty) or in the file / et c/ get t ydef s (as with ngetty).



Solaris Terminal Logins

Solaris supports two forms of terminal logins: (a) getty style, as described previously for BSD, and
(b) ttynon logins, a feature introduced with SVR4. Normally, getty is used for the console, and
t t ynon is used for other terminal logins.

The ttynon command is part of a larger facility termed SAF, the Service Access Facility. The goal of
the SAF was to provide a consistent way to administer services that provide access to a system. (See
Chapter 6 of Rago [1993] for more details.) For our purposes, we end up with the same picture as in
Figure 9.3, with a different set of steps between i nit and the login shell. i ni t is the parent of sac
(the service access controller), which does a f or k and exec of the ttynon program when the system
enters multiuser state. The tt ynon program monitors all the terminal ports listed in its configuration
file and does a f or k when we've entered our login name. This child of tt ynon does an exec of | ogi n,
and | ogi n prompts us for our password. Once this is done, | ogi n execs our login shell, and we're at
the position shown in Figure 9.3. One difference is that the parent of our login shell is now t t ynon,
whereas the parent of the login shell from a getty loginisinit.
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9.3. Network Logins

The main (physical) difference between logging in to a system through a serial terminal and logging
in to a system through a network is that the connection between the terminal and the computer isn't
point-to-point. In this case, | ogi n is simply a service available, just like any other network service,
such as FTP or SMTP.

With the terminal logins that we described in the previous section, i ni t knows which terminal devices
are enabled for logins and spawns a get ty process for each device. In the case of network logins,
however, all the logins come through the kernel's network interface drivers (e.g., the Ethernet
driver), and we don't know ahead of time how many of these will occur. Instead of having a process
waiting for each possible login, we now have to wait for a network connection request to arrive.

To allow the same software to process logins over both terminal logins and network logins, a software
driver called a pseudo terminal is used to emulate the behavior of a serial terminal and map terminal
operations to network operations, and vice versa. (In Chapter 19, we'll talk about pseudo terminals in
detail.)

BSD Network Logins

In BSD, a single process waits for most network connections: the i net d process, sometimes called
the Internet superserver. In this section, we'll look at the sequence of processes involved in network
logins for a BSD system. We are not interested in the detailed network programming aspects of these
processes; refer to Stevens, Fenner, and Rudoff [2004] for all the details.

As part of the system start-up, i ni t invokes a shell that executes the shell script /et c/ rc. One of the
daemons that is started by this shell script is i net d. Once the shell script terminates, the parent
process of i netd becomes init; i netd waits for TCP/IP connection requests to arrive at the host.
When a connection request arrives for it to handle, i net d does a f or k and exec of the appropriate
program.

Let's assume that a TCP connection request arrives for the TELNET server. TELNET is a remote login
application that uses the TCP protocol. A user on another host (that is connected to the server's host
through a network of some form) or on the same host initiates the login by starting the TELNET
client:

t el net hostname

The client opens a TCP connection to hostname, and the program that's started on hostname is called
the TELNET server. The client and the server then exchange data across the TCP connection using
the TELNET application protocol. What has happened is that the user who started the client program
is now logged in to the server's host. (This assumes, of course, that the user has a valid account on



the server's host.) Figure 9.4 shows the sequence of processes involved in executing the TELNET

server, called t el net d.

Figure 9.4. Sequence of processes involved in executing TELNET server
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The t el net d process then opens a pseudo-terminal device and splits into two processes using f or k.
The parent handles the communication across the network connection, and the child does an exec of
the | ogi n program. The parent and the child are connected through the pseudo terminal. Before
doing the exec, the child sets up file descriptors 0, 1, and 2 to the pseudo terminal. If we log in
correctly, | ogi n performs the same steps we described in Section 9.2: it changes to our home
directory and sets our group IDs, user ID, and our initial environment. Then | ogi n replaces itself with
our login shell by calling exec. Figure 9.5 shows the arrangement of the processes at this point.

Figure 9.5. Arrangement of processes after everything is set for a
network login
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Obviously, a lot is going on between the pseudo-terminal device driver and the actual user at the
terminal. We'll show all the processes involved in this type of arrangement in Chapter 19 when we
talk about pseudo terminals in more detail.

The important thing to understand is that whether we log in through a terminal (Eigure 9.3) or a
network (Eigure 9.5), we have a login shell with its standard input, standard output, and standard
error connected to either a terminal device or a pseudo-terminal device. We'll see in the coming
sections that this login shell is the start of a POSIX.1 session, and that the terminal or pseudo
terminal is the controlling terminal for the session.

Mac OS X Network Logins

Logging in to a Mac OS X system over a network is identical to a BSD system, because Mac OS X is
based partially on FreeBSD.

Linux Network Logins

Network logins under Linux are the same as under BSD, except that an alternate i net d process is
used, called the extended Internet services daemon, xi net d. The xi net d process provides a finer level
of control over services it starts than does i netd.

Solaris Network Logins



The scenario for network logins under Solaris is almost identical to the steps under BSD and Linux.
An i netd server is used similar to the BSD version. The Solaris version has the additional ability to
run under the service access facility framework, although it is not configured to do so. Instead, the
i netd server is started by i ni t . Either way, we end up with the same overall picture as in Figure 9.5.
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9.4. Process Groups

In addition to having a process ID, each process also belongs to a process group. We'll encounter
process groups again when we discuss signals in Chapter 10.

A process group is a collection of one or more processes, usually associated with the same job (job
control is discussed in Section 9.8), that can receive signals from the same terminal. Each process
group has a unique process group ID. Process group IDs are similar to process IDs: they are positive
integers and can be stored in a pi d_t data type. The function get pgr p returns the process group ID of
the calling process.

#i ncl ude <uni std. h>

pid_t getpgrp(void);

Returns: process group ID of calling process

In older BSD-derived systems, the get pgr p function took a pid argument and returned the process
group for that process. The Single UNIX Specification defines the get pgi d function as an XSl
extension that mimics this behavior.

#i ncl ude <uni std. h>

pid_t getpgid(pid_t pid);

Returns: process group ID if OK, 1 on error

If pid is O, the process group ID of the calling process is returned. Thus,

get pgi d(0) ;



is equivalent to

get pgrp();

Each process group can have a process group leader. The leader is identified by its process group ID
being equal to its process ID.

It is possible for a process group leader to create a process group, create processes in the group, and
then terminate. The process group still exists, as long as at least one process is in the group,
regardless of whether the group leader terminates. This is called the process group lifetimethe period
of time that begins when the group is created and ends when the last remaining process leaves the
group. The last remaining process in the process group can either terminate or enter some other
process group.

A process joins an existing process group or creates a new process group by calling set pgi d. (In the
next section, we'll see that set si d also creates a new process group.)

#i ncl ude <uni std. h>

int setpgid(pid_t pid, pid_t pgid);

Returns: O if OK, 1 on error

This function sets the process group ID to pgid in the process whose process ID equals pid. If the two
arguments are equal, the process specified by pid becomes a process group leader. If pid is O, the
process ID of the caller is used. Also, if pgid is 0, the process ID specified by pid is used as the
process group ID.

A process can set the process group ID of only itself or any of its children. Furthermore, it can't
change the process group ID of one of its children after that child has called one of the exec
functions.

In most job-control shells, this function is called after a f or k to have the parent set the process group
ID of the child, and to have the child set its own process group ID. One of these calls is redundant,
but by doing both, we are guaranteed that the child is placed into its own process group before either
process assumes that this has happened. If we didn't do this, we would have a race condition, since
the child's process group membership would depend on which process executes first.

When we discuss signals, we'll see how we can send a signal to either a single process (identified by
its process ID) or a process group (identified by its process group ID). Similarly, the wai t pi d function
from Section 8.6 lets us wait for either a single process or one process from a specified process

group.



e rrcy | nexr



=TeTe e prev | nexr o

9.5. Sessions

A session is a collection of one or more process groups. For example, we could have the arrangement
shown in Figure 9.6. Here we have three process groups in a single session.

Figure 9.6. Arrangement of processes into process groups and sessions
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The processes in a process group are usually placed there by a shell pipeline. For example, the
arrangement shown in Figure 9.6 could have been generated by shell commands of the form

procl | proc2 &
proc3 | procd | proch

A process establishes a new session by calling the set si d function.

#i ncl ude <uni std. h>

pid_t setsid(void);

Returns: process group ID if OK, 1 on error




If the calling process is not a process group leader, this function creates a new session. Three things
happen.

1. The process becomes the session leader of this new session. (A session leader is the process
that creates a session.) The process is the only process in this new session.

2. The process becomes the process group leader of a new process group. The new process group
ID is the process ID of the calling process.

3. The process has no controlling terminal. (We'll discuss controlling terminals in the next section.)
If the process had a controlling terminal before calling set si d, that association is broken.

This function returns an error if the caller is already a process group leader. To ensure this is not the
case, the usual practice is to call f or k and have the parent terminate and the child continue. We are
guaranteed that the child is not a process group leader, because the process group ID of the parent
is inherited by the child, but the child gets a new process ID. Hence, it is impossible for the child's
process ID to equal its inherited process group ID.

The Single UNIX Specification talks only about a "session leader.” There is no "session ID" similar to a
process ID or a process group ID. Obviously, a session leader is a single process that has a unique
process ID, so we could talk about a session ID that is the process ID of the session leader. This
concept of a session ID was introduced in SVR4. Historically, BSD-based systems didn't support this
notion, but have since been updated to include it. The get si d function returns the process group ID

of a process's session leader. The get si d function is included as an XSI extension in the Single UNIX
Specification.

Some implementations, such as Solaris, join with the Single UNIX Specification in the practice of
avoiding the use of the phrase "session ID," opting instead to refer to this as the "process group

ID of the session leader.” The two are equivalent, since the session leader is always the leader
of a process group.

#i ncl ude <uni std. h>

pid t getsid(pid_t pid);

Returns: session leader's process group ID if OK, 1 on error

If pid is O, get si d returns the process group ID of the calling process's session leader. For security
reasons, some implementations may restrict the calling process from obtaining the process group ID
of the session leader if pid doesn't belong to the same session as the caller.
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9.6. Controlling Terminal

Sessions and process groups have a few other characteristics.

e A session can have a single controlling terminal. This is usually the terminal device (in the case
of a terminal login) or pseudo-terminal device (in the case of a network login) on which we log
in.

e The session leader that establishes the connection to the controlling terminal is called the
controlling process.

e The process groups within a session can be divided into a single foreground process group and
one or more background process groups.

e If a session has a controlling terminal, it has a single foreground process group, and all other
process groups in the session are background process groups.

e Whenever we type the terminal's interrupt key (often DELETE or Control-C), this causes the
interrupt signal be sent to all processes in the foreground process group.

e Whenever we type the terminal's quit key (often Control-backslash), this causes the quit signal
to be sent to all processes in the foreground process group.

¢ If a modem (or network) disconnect is detected by the terminal interface, the hang-up signal is
sent to the controlling process (the session leader).

These characteristics are shown in Figure 9.7.

Figure 9.7. Process groups and sessions showing controlling terminal
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Usually, we don't have to worry about the controlling terminal; it is established automatically when
we log in.

POSIX.1 leaves the choice of the mechanism used to allocate a controlling terminal up to each
individual implementation. We'll show the actual steps in Section 19.4.

Systems derived from UNIX System V allocate the controlling terminal for a session when the
session leader opens the first terminal device that is not already associated with a session. This
assumes that the call to open by the session leader does not specify the O NOCTTY flag (Section
3.3).

BSD-based systems allocate the controlling terminal for a session when the session leader calls
i oct| with a request argument of TI OCSCTTY (the third argument is a null pointer). The session
cannot already have a controlling terminal for this call to succeed. (Normally, this call to i oct |
follows a call to set si d, which guarantees that the process is a session leader without a
controlling terminal.) The POSIX.1 O NOCTTY flag to open is not used by BSD-based systems,
except in compatibility-mode support for other systems.

There are times when a program wants to talk to the controlling terminal, regardless of whether the
standard input or standard output is redirected. The way a program guarantees that it is talking to
the controlling terminal is to open the file / dev/ tty. This special file is a synonym within the kernel for
the controlling terminal. Naturally, if the program doesn't have a controlling terminal, the open of this
device will fail.

The classic example is the get pass(3) function, which reads a password (with terminal echoing turned

off, of course). This function is called by the crypt (1) program and can be used in a pipeline. For
example,

crypt < salaries | Ipr



decrypts the file sal ari es and pipes the output to the print spooler. Because crypt reads its input file
on its standard input, the standard input can't be used to enter the password. Also, crypt is designed
so that we have to enter the encryption password each time we run the program, to prevent us from
saving the password in a file (which could be a security hole).

There are known ways to break the encoding used by the crypt program. See Garfinkel et al. [2003]
for more details on encrypting files.
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9.7.tcget pgrp, tcset pgrp, and t cget si d Functions

We need a way to tell the kernel which process group is the foreground process group, so that the
terminal device driver knows where to send the terminal input and the terminal-generated signals
(Figure 9.7).

#i ncl ude <uni std. h>

pid_t tcgetpgrp(int filedes);

Returns: process group ID of foreground process group if OK, 1 on error

int tcsetpgrp(int filedes, pid_t pgrpid);

Returns: O if OK, 1 on error

The function t cget pgr p returns the process group ID of the foreground process group associated with
the terminal open on filedes.

If the process has a controlling terminal, the process can call t cset pgr p to set the foreground process
group ID to pgrpid. The value of pgrpid must be the process group ID of a process group in the same
session, and filedes must refer to the controlling terminal of the session.

Most applications don't call these two functions directly. They are normally called by job-control
shells.

The Single UNIX Specification defines an XSI extension called t cget si d to allow an application to
obtain the process group ID for the session leader given a file descriptor for the controlling TTY.



#i ncl ude <term os. h>

pid t tcgetsid(int filedes);

Returns: session leader's process group ID if OK, 1 on error

Applications that need to manage controlling terminals can use t cget si d to identify the session ID of
the controlling terminal's session leader (which is equivalent to the session leader's process group
ID).
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9.8. Job Control

Job control is a feature added to BSD around 1980. This feature allows us to start multiple jobs
(groups of processes) from a single terminal and to control which jobs can access the terminal and
which jobs are to run in the background. Job control requires three forms of support:

1. A shell that supports job control
2. The terminal driver in the kernel must support job control
3. The kernel must support certain job-control signals

SVR3 provided a different form of job control called shell layers. The BSD form of job
control, however, was selected by POSIX.1 and is what we describe here. In earlier
versions of the standard, job control support was optional, but POSIX.1 now requires
platforms to support it.

From our perspective, using job control from a shell, we can start a job in either the foreground or
the background. A job is simply a collection of processes, often a pipeline of processes. For example,

vi main.c

starts a job consisting of one process in the foreground. The commands

pr *.c | lpr &
make all &

start two jobs in the background. All the processes invoked by these background jobs are in the
background.

As we said, to use the features provided by job control, we need to be using a shell that supports job
control. With older systems, it was simple to say which shells supported job control and which didn't.
The C shell supported job control, the Bourne shell didn't, and it was an option with the Korn shell,
depending whether the host supported job control. But the C shell has been ported to systems (e.g.,
earlier versions of System V) that don't support job control, and the SVR4 Bourne shell, when
invoked by the name j sh instead of sh, supports job control. The Korn shell continues to support job
control if the host does. The Bourne-again shell also supports job control. We'll just talk generically
about a shell that supports job control, versus one that doesn't, when the difference between the
various shells doesn't matter.



When we start a background job, the shell assigns it a job identifier and prints one or more of the
process IDs. The following script shows how the Korn shell handles this:

$ make all > Make.out &

[ 1] 1475

$pr *.c| lpr &

[2] 1490

$ just press RETURN
[2] + Done pr *.c | lpr &

[1] + Done make all > Make.out &

The make is job number 1 and the starting process ID is 1475. The next pipeline is job number 2 and
the process ID of the first process is 1490. When the jobs are done and when we press RETURN, the
shell tells us that the jobs are complete. The reason we have to press RETURN is to have the shell
print its prompt. The shell doesn't print the changed status of background jobs at any random
timeonly right before it prints its prompt, to let us enter a new command line. If the shell didn't do
this, it could output while we were entering an input line.

The interaction with the terminal driver arises because a special terminal character affects the
foreground job: the suspend key (typically Control-Z). Entering this character causes the terminal
driver to send the S| GTSTP signal to all processes in the foreground process group. The jobs in any
background process groups aren't affected. The terminal driver looks for three special characters,
which generate signals to the foreground process group.

e The interrupt character (typically DELETE or Control-C) generates Sl G NT.
e The quit character (typically Control-backslash) generates SI GQUI T.
e The suspend character (typically Control-Z) generates SI GTSTP.

In Chapter 18, we'll see how we can change these three characters to be any characters we choose
and how we can disable the terminal driver's processing of these special characters.

Another job control condition can arise that must be handled by the terminal driver. Since we can
have a foreground job and one or more background jobs, which of these receives the characters that
we enter at the terminal? Only the foreground job receives terminal input. It is not an error for a
background job to try to read from the terminal, but the terminal driver detects this and sends a
special signal to the background job: SI GITI N. This signal normally stops the background job; by
using the shell, we are notified of this and can bring the job into the foreground so that it can read
from the terminal. The following demonstrates this:

$ cat > tenp.foo & start in background, but it'll read from standard input
[1] 1681

$ we press RETURN

[1] + Stopped (SIGITIN) cat > tenp.foo &

$fg % bring job number 1 into the foreground

cat > tenp.foo the shell tells us which job is now in the foreground



hello, world enter one line

"D type the end-of-file character
$ cat tenp.foo check that the one line was put into the file
hel l o, world

The shell starts the cat process in the background, but when cat tries to read its standard input (the
controlling terminal), the terminal driver, knowing that it is a background job, sends the SI GTTI N
signal to the background job. The shell detects this change in status of its child (recall our discussion
of the wai t and wai t pi d function in Section 8.6) and tells us that the job has been stopped. We then
move the stopped job into the foreground with the shell's f g command. (Refer to the manual page
for the shell that you are using, for all the details on its job control commands, such as f g and bg,
and the various ways to identify the different jobs.) Doing this causes the shell to place the job into
the foreground process group (t cset pgr p) and send the continue signal (SI GCONT) to the process
group. Since it is now in the foreground process group, the job can read from the controlling
terminal.

What happens if a background job outputs to the controlling terminal? This is an option that we can
allow or disallow. Normally, we use the stty(1) command to change this option. (We'll see in Chapter
18 how we can change this option from a program.) The following shows how this works:

View full width

$ cat tenp.foo & execute in background

[ 1] 1719

$ hello, world the output from the background job appears after the prompt

we pressRETURN

[1] + Done cat tenp.foo &

$ stty tostop di sable ability of background jobs to output to
®™ontrolling terninal

$ cat tenp.foo & try it again in the background

[ 1] 1721

$ we press RETURN and find the job is stopped

[1] + Stopped(SI GTTOU) cat tenp.foo &

$fg % resume stopped job in the foreground

cat tenp.foo the shell tells us which job is now in the foreground

hell o, world and hereisits output

When we disallow background jobs from writing to the controlling terminal, cat will block when it tries
to write to its standard output, because the terminal driver identifies the write as coming from a
background process and sends the job the SI GTTQU signal. As with the previous example, when we
use the shell's f g command to bring the job into the foreground, the job completes.

Figure 9.8 summarizes some of the features of job control that we've been describing. The solid lines
through the terminal driver box mean that the terminal 1/0 and the terminal-generated signals are
always connected from the foreground process group to the actual terminal. The dashed line
corresponding to the Sl GTTOU signal means that whether the output from a process in the background
process group appears on the terminal is an option.



Figure 9.8. Summary of job control features with foreground and
background jobs, and terminal driver
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Is job control necessary or desirable? Job control was originally designed and implemented before



windowing terminals were widespread. Some people claim that a well-designed windowing system
removes any need for job control. Some complain that the implementation of job controlrequiring
support from the kernel, the terminal driver, the shell, and some applicationsis a hack. Some use job

control with a windowing system, claiming a need for both. Regardless of your opinion, job control is
a required feature of POSIX.1.

== e pricv | nexr e |



=TeTe e prev | nexr o

9.9. Shell Execution of Programs

Let's examine how the shells execute programs and how this relates to the concepts of process
groups, controlling terminals, and sessions. To do this, we'll use the ps command again.

First, we'll use a shell that doesn't support job controlthe classic Bourne shell running on Solaris. If
we execute

ps -0 pid, ppid,pgid,sid, conm

the output is

PID PPID PAD SID COMVAND
949 947 949 949 sh
1774 949 949 949 ps

The parent of the ps command is the shell, which we would expect. Both the shell and the ps
command are in the same session and foreground process group (949). We say that 949 is the
foreground process group because that is what you get when you execute a command with a shell
that doesn't support job control.

Some platforms support an option to have the ps(1) command print the process group ID
associated with the session's controlling terminal. This value would be shown under the TPGID
column. Unfortunately, the output of the ps command often differs among versions of the UNIX
System. For example, Solaris 9 doesn't support this option. Under FreeBSD 5.2.1 and Mac OS X
10.3, the command

ps -0 pid, ppid, pgid, sess,tpgid, comrand

and under Linux 2.4.22, the command

ps -0 pid, ppid, pgrp, session,tpgid, conm

print exactly the information we want.



Note that it is a misnomer to associate a process with a terminal process group ID (the TPGID
column). A process does not have a terminal process control group. A process belongs to a
process group, and the process group belongs to a session. The session may or may not have a
controlling terminal. If the session does have a controlling terminal, then the terminal device
knows the process group ID of the foreground process. This value can be set in the terminal
driver with the t cset pgr p function, as we show in Figure 9.8. The foreground process group ID
is an attribute of the terminal, not the process. This value from the terminal device driver is
what ps prints as the TPGID. If it finds that the session doesn't have a controlling terminal, ps

prints 1.

If we execute the command in the background,

ps -o pid, ppid,pgid,sid, comm &

the only value that changes is the process ID of the command:

PID PPID PAD SID COMVAND
949 947 949 949 sh
1812 949 949 949 ps

This shell doesn't know about job control, so the background job is not put into its own process group
and the controlling terminal isn't taken away from the background job.

Let's now look at how the Bourne shell handles a pipeline. When we execute

ps -0 pid,ppid,pgid, sid,comm| catl

the output is

PID PPID PAD SID COMVAND
949 947 949 949 sh

1823 949 949 949 catl
1824 1823 949 949 ps

(The program cat 1 is just a copy of the standard cat program, with a different name. We have
another copy of cat with the name cat 2, which we'll use later in this section. When we have two
copies of cat in a pipeline, the different names let us differentiate between the two programs.) Note
that the last process in the pipeline is the child of the shell and that the first process in the pipeline is
a child of the last process. It appears that the shell f or ks a copy of itself and that this copy then

f or ks to make each of the previous processes in the pipeline.



If we execute the pipeline in the background,

ps -o pid, ppid,pgid,sid,comm| catl &

only the process IDs change. Since the shell doesn't handle job control, the process group ID of the
background processes remains 949, as does the process group ID of the session.

What happens in this case if a background process tries to read from its controlling terminal? For
example, suppose that we execute

cat > tenp.foo &

With job control, this is handled by placing the background job into a background process group,
which causes the signal SI GTTI Nto be generated if the background job tries to read from the
controlling terminal. The way this is handled without job control is that the shell automatically
redirects the standard input of a background process to / dev/ nul | , if the process doesn't redirect
standard input itself. A read from / dev/ nul | generates an end of file. This means that our
background cat process immediately reads an end of file and terminates normally.

The previous paragraph adequately handles the case of a background process accessing the
controlling terminal through its standard input, but what happens if a background process specifically
opens / dev/ tty and reads from the controlling terminal? The answer is "it depends," but it's probably
not what we want. For example,

crypt < salaries | lpr &

is such a pipeline. We run it in the background, but the crypt program opens /dev/tty, changes the
terminal characteristics (to disable echoing), reads from the device, and resets the terminal
characteristics. When we execute this background pipeline, the prompt Passwor d: from crypt is
printed on the terminal, but what we enter (the encryption password) is read by the shell, which tries
to execute a command of that name. The next line we enter to the shell is taken as the password,
and the file is not encrypted correctly, sending junk to the printer. Here we have two processes trying
to read from the same device at the same time, and the result depends on the system. Job control,
as we described earlier, handles this multiplexing of a single terminal between multiple processes in a
better fashion.

Returning to our Bourne shell example, if we execute three processes in the pipeline, we can examine
the process control used by this shell:

ps -o pid,ppid,pgid,sid,comm| catl | cat2



generates the following output

PID PPID PED SID COMVAND
949 947 949 949 sh
1988 949 949 949 cat?2
1989 1988 949 949 ps

1990 1988 949 949 catl

Don't be alarmed if the output on your system doesn't show the proper command names.
Sometimes you might get results such as

PID PPID PG D SID COMVAND
949 947 949 949 sh
1831 949 949 949 sh
1832 1831 949 949 ps
1833 1831 949 949 sh

What's happening here is that the ps process is racing with the shell, which is forking and
executing the cat commands. In this case, the shell hasn't yet completed the call to exec when

ps has obtained the list of processes to print.

Again, the last process in the pipeline is the child of the shell, and all previous processes in the

pipeline are children of the last process. Figure 9.9 shows what is happening. Since the last process in
the pipeline is the child of the login shell, the shell is notified when that process (cat 2) terminates.

Figure 9.9. Processes in the pipeline ps | catl | cat2 when invoked by

Bourne shell

[View full size image]
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Now let's examine the same examples using a job-control shell running on Linux. This shows the way
these shells handle background jobs. We'll use the Bourne-again shell in this example; the results
with other job-control shells are almost identical.

ps -o pid, ppid, pgrp, session,tpgid, comm

gives us

PID PPID PGRP SESS TPG D COVVAND
2837 2818 2837 2837 5796 bash
5796 2837 5796 2837 5796 ps

(Starting with this example, we show the foreground process group in a bol der font.) We
immediately have a difference from our Bourne shell example. The Bourne-again shell places the
foreground job (ps) into its own process group (5796). The ps command is the process group leader
and the only process in this process group.

Furthermore, this process group is the foreground process group, since it has the controlling
terminal. Our login shell is a background process group while the ps command executes. Note,
however, that both process groups, 2837 and 5796, are members of the same session. Indeed, we'll
see that the session never changes through our examples in this section.

Executing this process in the background,

ps -o pid, ppid, pgrp, session,tpgid, comm &



gives us

PID PPID PGRP SESS TPGA D COMVAND
2837 2818 2837 2837
5797 2837 5797 2837

2837 bash
2837 ps

Again, the ps command is placed into its own process group, but this time the process group (5797)
is no longer the foreground process group. It is a background process group. The TPGID of 2837
indicates that the foreground process group is our login shell.

Executing two processes in a pipeline, as in

ps -0 pid,ppid, pgrp, session,tpgid, comm| catl

gives us
PID PPID
2837 2818
5799 2837
5800 2837

PGRP
2837
5799
5799

SESS
2837
2837
2837

TPA D COMVAND
5799 bash
5799 ps
5799 catl

Both processes, ps and cat 1, are placed into a new process group (5799), and this is the foreground
process group. We can also see another difference between this example and the similar Bourne shell
example. The Bourne shell created the last process in the pipeline first, and this final process was the
parent of the first process. Here, the Bourne-again shell is the parent of both processes. If we

execute this pipeline in the background,

ps -0 pid, ppid,pgrp, session,tpgid,comm| catl &

the results are similar, but now ps and cat 1 are placed in the same background process group:

PID PPID
2837 2818
5801 2837

5802 2837

PGRP
2837
5801
5801

SESS
2837
2837
2837

TPA D COMVAND
2837 bash
2837 ps
2837 cat1l



Note that the order in which a shell creates processes can differ depending on the particular shell in
use.
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9.10. Orphaned Process Groups

We've mentioned that a process whose parent terminates is called an orphan and is inherited by the
i nit process. We now look at entire process groups that can be orphaned and how POSIX.1 handles
this situation.

Example

Consider a process that f or ks a child and then terminates. Although this is nothing abnormal (it
happens all the time), what happens if the child is stopped (using job control) when the parent
terminates? How will the child ever be continued, and does the child know that it has been orphaned?
Figure 9.10 shows this situation: the parent process has f or ked a child that stops, and the parent is
about to exit.

The program that creates this situation is shown in Figure 9.11. This program has some new
features. Here, we are assuming a job-control shell. Recall from the previous section that the shell
places the foreground process into its own process group (6099 in this example) and that the shell
stays in its own process group (2837). The child inherits the process group of its parent (6099). After
the fork,

e The parent sleeps for 5 seconds. This is our (imperfect) way of letting the child execute before
the parent terminates.

e The child establishes a signal handler for the hang-up signal (SI GHUP). This is so we can see
whether S| GHUP is sent to the child. (We discuss signal handlers in Chapter 10.)

e The child sends itself the stop signal (SI GTSTP) with the ki | | function. This stops the child,
similar to our stopping a foreground job with our terminal's suspend character (Control-2).

e When the parent terminates, the child is orphaned, so the child's parent process ID becomes 1,
the i nit process ID.

e At this point, the child is now a member of an orphaned process group. The POSIX.1 definition
of an orphaned process group is one in which the parent of every member is either itself a
member of the group or is not a member of the group's session. Another way of wording this is
that the process group is not orphaned as long as a process in the group has a parent in a
different process group but in the same session. If the process group is not orphaned, there is a
chance that one of those parents in a different process group but in the same session will
restart a stopped process in the process group that is not orphaned. Here, the parent of every
process in the group (e.g., process 1 is the parent of process 6100) belongs to another session.

e Since the process group is orphaned when the parent terminates, POSIX.1 requires that every
process in the newly orphaned process group that is stopped (as our child is) be sent the hang-
up signal (SI GHUP) followed by the continue signal (SI GCONT).



e This causes the child to be continued, after processing the hang-up signal. The default action for
the hang-up signal is to terminate the process, so we have to provide a signal handler to catch
the signal. We therefore expect the printf in the si g_hup function to appear before the pri nt f
in the pr_i ds function.

Here is the output from the program shown in Figure 9.11:

$ ./a.out

parent: pid = 6099, ppid = 2837, pgrp = 6099, tpgrp = 6099
child: pid = 6100, ppid = 6099, pgrp = 6099, tpgrp = 6099
$ SI GHUP received, pid = 6100

child: pid = 6100, ppid =1, pgrp = 6099, tpgrp = 2837
read error fromcontrolling TTY, errno = 5

Note that our shell prompt appears with the output from the child, since two processesour login shell
and the childare writing to the terminal. As we expect, the parent process ID of the child has become
1.

After calling pr _i ds in the child, the program tries to read from standard input. As we saw earlier in
this chapter, when a background process group tries to read from its controlling terminal, SI GTTI N is
generated for the background process group. But here we have an orphaned process group; if the
kernel were to stop it with this signal, the processes in the process group would probably never be
continued. POSIX.1 specifies that the read is to return an error with errno set to El O (whose value is
5 on this system) in this situation.

Finally, note that our child was placed in a background process group when the parent terminated,
since the parent was executed as a foreground job by the shell.

Figure 9.10. Example of a process group about to be orphaned
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Figure 9.11. Creating an orphaned process group
#i ncl ude "apue. h"

#i ncl ude <errno. h>

static void

si g_hup(int signo)

{

}

printf("SIGHUP received, pid = %\ n", getpid());

static void
pr_ids(char *nane)

{

printf("%: pid = 9%, ppid = %, pgrp = %, tpgrp = %\ n",

nane, getpid(), getppid(), getpgrp(), tcgetpgrp(STDI N_FILENO));

fflush(stdout);
}
i nt
mai n( voi d)
{

char c;

pid_t pi d;

pr_ids("parent");
if ((pid="fork()) <0) {
err_sys("fork error");



} elseif (pid > 0) { [* parent */

sl eep(5); /*sleep to let child stop itself */
exit(0); /* then parent exits */
} else { [* child */

pr_ids("child");
si gnal (SI GHUP, sig_hup); /* establish signal handler */
kill(getpid(), SIGISTP); /* stop ourself */
pr_ids("child"); [* prints only if we're continued */
if (read(STDI N_FILENO, &c, 1) != 1)

printf("read error fromcontrolling TTY, errno = %\ n",

errno);

exit(0);

We'll see another example of orphaned process groups in Section 19.5 with the pty program.
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9.11. FreeBSD Implementation

Having talked about the various attributes of a process, process group, session, and controlling
terminal, it's worth looking at how all this can be implemented. We'll look briefly at the
implementation used by FreeBSD. Some details of the SVR4 implementation of these features can be
found in Williams [1989]. Figure 9.12 shows the various data structures used by FreeBSD.

Figure 9.12. FreeBSD implementation of sessions and process groups
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Let's look at all the fields that we've labeled, starting with the sessi on structure. One of these
structures is allocated for each session (e.g., each time set si d is called).

e s_count is the number of process groups in the session. When this counter is decremented to O,



the structure can be freed.

s_| eader is a pointer to the proc structure of the session leader.
s_ttyvp is a pointer to the vnode structure of the controlling terminal.
s_ttyp is a pointer to the tty structure of the controlling terminal.

s_si d is the session ID. Recall that the concept of a session ID is not part of the Single UNIX
Specification.

When set si d is called, a new sessi on structure is allocated within the kernel. Now s_count is set to 1,
s_| eader is set to point to the proc structure of the calling process, s_si d is set to the process ID,
and s_ttyvp and s_ttyp are set to null pointers, since the new session doesn't have a controlling
terminal.

Let's move to the tty structure. The kernel contains one of these structures for each terminal device
and each pseudo-terminal device. (We talk more about pseudo terminals in Chapter 19.)

t _sessi on points to the sessi on structure that has this terminal as its controlling terminal. (Note
that the tty structure points to the sessi on structure and vice versa.) This pointer is used by
the terminal to send a hang-up signal to the session leader if the terminal loses carrier (Eigure

9.7).

t _pgrp points to the pgrp structure of the foreground process group. This field is used by the
terminal driver to send signals to the foreground process group. The three signals generated by
entering special characters (interrupt, quit, and suspend) are sent to the foreground process

group.

t _term os is a structure containing all the special characters and related information for this
terminal, such as baud rate, is echo on or off, and so on. We'll return to this structure in

Chapter 18.

t _wi nsi ze is a wi nsi ze structure that contains the current size of the terminal window. When
the size of the terminal window changes, the SI GW NCH signal is sent to the foreground process
group. We show how to set and fetch the terminal's current window size in Section 18.12.

Note that to find the foreground process group of a particular session, the kernel has to start with the
session structure, follow s_ttyp to get to the controlling terminal's tty structure, and then follow

t _pgrp to get to the foreground process group's pgr p structure. The pgr p structure contains the
information for a particular process group.

pg_i d is the process group ID.
pg_sessi on points to the sessi on structure for the session to which this process group belongs.

pg_nenber s is a pointer to the list of pr oc structures that are members of this process group.
The p_pgli st structure in that proc structure is a doubly-linked list entry that points to both the
next process and the previous process in the group, and so on, until a null pointer is
encountered in the proc structure of the last process in the group.

The proc structure contains all the information for a single process.



e p_pi d contains the process ID.
e p_pptr is a pointer to the proc structure of the parent process.
e p_pgrp points to the pgrp structure of the process group to which this process belongs.

e p_pglist is a structure containing pointers to the next and previous processes in the process
group, as we mentioned earlier.

Finally, we have the vnode structure. This structure is allocated when the controlling terminal device
is opened. All references to / dev/tty in a process go through this vnode structure. We show the
actual i-node as being part of the v-node.

== e prcv | nexrw |



=TeTe e prev | nexr o

9.12. Summary

This chapter has described the relationships between groups of processes: sessions, which are made
up of process groups. Job control is a feature supported by most UNIX systems today, and we've
described how it's implemented by a shell that supports job control. The controlling terminal for a
process, / dev/tty, is also involved in these process relationships.

We've made numerous references to the signals that are used in all these process relationships. The
next chapter continues the discussion of signals, looking at all the UNIX System signals in detail.
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Exercises

9.1 Refer back to our discussion of the ut np and wt np files in Section 6.8. Why are the logout
records written by the i nit process? Is this handled the same way for a network login?

9.2 Write a small program that calls f or k and has the child create a new session. Verify that
the child becomes a process group leader and that the child no longer has a controlling

terminal.
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Chapter 10. Signals

Section 10.1. Introduction
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10.1. Introduction

Signals are software interrupts. Most nontrivial application programs need to deal with signals.
Signals provide a way of handling asynchronous events: a user at a terminal typing the interrupt key
to stop a program or the next program in a pipeline terminating prematurely.

Signals have been provided since the early versions of the UNIX System, but the signal model
provided with systems such as Version 7 was not reliable. Signals could get lost, and it was difficult
for a process to turn off selected signals when executing critical regions of code. Both 4.3BSD and
SVR3 made changes to the signal model, adding what are called reliable signals. But the changes
made by Berkeley and AT&T were incompatible. Fortunately, POSIX.1 standardized the reliable-signal
routines, and that is what we describe here.

In this chapter, we start with an overview of signals and a description of what each signal is normally
used for. Then we look at the problems with earlier implementations. It is often important to
understand what is wrong with an implementation before seeing how to do things correctly. This
chapter contains numerous examples that are not entirely correct and a discussion of the defects.
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10.2. Signal Concepts

First, every signal has a name. These names all begin with the three characters S| G. For example,
S| GABRT is the abort signal that is generated when a process calls the abort function. SI GALRMis the
alarm signal that is generated when the timer set by the al ar mfunction goes off. Version 7 had 15
different signals; SVR4 and 4.4BSD both have 31 different signals. FreeBSD 5.2.1, Mac OS X 10.3,
and Linux 2.4.22 support 31 different signals, whereas Solaris 9 supports 38 different signals. Both
Linux and Solaris, however, support additional application-defined signals as real-time extensions
(the real-time extensions in POSIX aren't covered in this book; refer to Gallmeister [1995] for more
information).

These names are all defined by positive integer constants (the signal number) in the header
<si gnal . h>.

Implementations actually define the individual signals in an alternate header file, but this header
file is included by <si gnal . h>. It is considered bad form for the kernel to include header files
meant for user-level applications, so if the applications and the kernel both need the same
definitions, the information is placed in a kernel header file that is then included by the user-
level header file. Thus, both FreeBSD 5.2.1 and Mac OS X 10.3 define the signals in

<sys/si gnal . h>. Linux 2.4.22 defines the signals in <bi t s/ si gnum h>, and Solaris 9 defines them
in <sys/iso/signal _iso. h>.

No signal has a signal number of 0. We'll see in Section 10.9 that the ki | | function uses the signal
number of O for a special case. POSIX.1 calls this value the null signal.

Numerous conditions can generate a signal.

The terminal-generated signals occur when users press certain terminal keys. Pressing the
DELETE key on the terminal (or Control-C on many systems) normally causes the interrupt
signal (SI G NT) to be generated. This is how to stop a runaway program. (We'll see in Chapter
18 how this signal can be mapped to any character on the terminal.)

Hardware exceptions generate signals: divide by O, invalid memory reference, and the like.
These conditions are usually detected by the hardware, and the kernel is notified. The kernel
then generates the appropriate signal for the process that was running at the time the condition
occurred. For example, SI GSEGV is generated for a process that executes an invalid memory
reference.

The ki Il (2) function allows a process to send any signal to another process or process group.
Naturally, there are limitations: we have to be the owner of the process that we're sending the
signal to, or we have to be the superuser.

The ki || (1) command allows us to send signals to other processes. This program is just an
interface to the ki I | function. This command is often used to terminate a runaway background
process.

Software conditions can generate signals when something happens about which the process



should be notified. These aren't hardware-generated conditions (as is the divide-by-0
condition), but software conditions. Examples are SI GURG (generated when out-of-band data
arrives over a network connection), SI GPI PE (generated when a process writes to a pipe after
the reader of the pipe has terminated), and SI GALRM (generated when an alarm clock set by the
process expires).

Signals are classic examples of asynchronous events. Signals occur at what appear to be random
times to the process. The process can't simply test a variable (such as errno) to see whether a signal
has occurred; instead, the process has to tell the kernel "if and when this signal occurs, do the
following."

We can tell the kernel to do one of three things when a signal occurs. We call this the disposition of
the signal, or the action associated with a signal.

1.

Ignore the signal. This works for most signals, but two signals can never be ignored: SI GKI LL
and Sl GSTCP. The reason these two signals can't be ignored is to provide the kernel and the
superuser with a surefire way of either killing or stopping any process. Also, if we ignore some
of the signals that are generated by a hardware exception (such as illegal memory reference or
divide by 0), the behavior of the process is undefined.

Catch the signal. To do this, we tell the kernel to call a function of ours whenever the signal
occurs. In our function, we can do whatever we want to handle the condition. If we're writing a
command interpreter, for example, when the user generates the interrupt signal at the
keyboard, we probably want to return to the main loop of the program, terminating whatever
command we were executing for the user. If the SI GCHLD signal is caught, it means that a child
process has terminated, so the signal-catching function can call wai t pi d to fetch the child's
process ID and termination status. As another example, if the process has created temporary
files, we may want to write a signal-catching function for the SI GTERMsignal (the termination
signal that is the default signal sent by the ki || command) to clean up the temporary files. Note
that the two signals SI &KI LL and SI GSTOP can't be caught.

Let the default action apply. Every signal has a default action, shown in Figure 10.1. Note that
the default action for most signals is to terminate the process.

Figure 10.1. UNIX System signals

Name Description SUS Default action

Mac
1ISO os
C FreeBSD | Linux | X Solaris
5.2.1 2.4.22110.3 |9

S| GABRT abnormal . . o e - e terminate+core

termination
(abort)

SI GALRM timer expired - . - - . terminate

(al arm)




Mac

L 1ISO (O} .
Name Description C SUS FreeBSD | Linux | X Solaris Default action
5.2.1 2.4.22 1103 |9
SI GBUS hardware fault - - - - . terminate+core
SI GCANCEL | threads library - ignore
internal use
S| GCHLD change in status - . - - - ignore
of child
SI GCONT continue stopped - - - - - continue/ignore
process
SI GEMT hardware fault . - - - terminate+core
SI GFPE arithmetic - - - - - - terminate+core
exception
SI GFREEZE | checkpoint - ignore
freeze
SI GHUP hangup - - - - - terminate
SId LL illegal instruction | = - - - - - terminate+core
SI G NFO status request - . ignore
from keyboard
SI G NT terminal - - - - - - terminate
interrupt
character
SIG 0 asynchronous . - - . terminate/ignore
1/0
SIa ar hardware fault - - - - terminate+core
SI &KI LL termination - - - - - terminate
SI GLwWP threads library - ignore
internal use
SI GPI PE write to pipe . . . . . terminate
with no readers
SI GPALL pollable event XSl - - terminate
(pol 1)
SI GPROF profiling time XSl - - - - terminate

alarm
(setitiner)




Mac

L 1ISO (O} .
Name Description C SUS FreeBSD | Linux | X Solaris Default action
5.2.1 2.4.22 1103 |9

SI GPVWR power . . terminate/ignore
fail/restart

SIGQUIT terminal quit - - - - - terminate+core
character

S| GSEGV invalid memory . - . . - . terminate+core
reference

SI GSTKFLT | coprocessor - terminate
stack fault

S| GSTOP stop . . . . . stop process

SI GSYS invalid system XSl - - - - terminate+core
call

S| GTERM termination - - - - - - terminate

SI GTHAW checkpoint thaw - ignore

SI GTRAP hardware fault XSl - - - - terminate+core

SI GTSTP terminal stop . . . . . stop process
character

SI GITI N background read . o e - o stop process
from control tty

SI GITAQU background - - - - - stop process
write to control
tty

SI GURG urgent condition - . - - - ignore
(sockets)

SI GUSR1 user-defined - . . - - terminate
signal

Sl GUSR2 user-defined - - - - - terminate
signal

SI GVTALRM | virtual time XSl . . - - terminate
alarm
(setitiner)

SI GMI TI NG | threads library - ignore

internal use




Mac
. 1ISO 0s .
Name Description C SUS FreeBSD | Linux | X Solaris Default action

521 2.4.22 110.3 |9

S| GW NCH terminal window - - - - ignore
size change

SI GXCPU CPU limit XSl - - - - terminate+core/ignore
exceeded
(setrlimt)

S| GXFSZ file size limit XSl - - - - terminate+core/ignore
exceeded
(setrlimt)

S| GXRES resource control . ignore
exceeded

Figure 10.1 lists the names of all the signals, an indication of which systems support the signal, and
the default action for the signal. The SUS column contains « if the signal is defined as part of the base
POSIX.1 specification and XSl if it is defined as an XSI extension to the base.

When the default action is labeled "terminate+core," it means that a memory image of the process is
left in the file named cor e of the current working directory of the process. (Because the file is named
cor e, it shows how long this feature has been part of the UNIX System.) This file can be used with
most UNIX System debuggers to examine the state of the process at the time it terminated.

The generation of the cor e file is an implementation feature of most versions of the UNIX
System. Although this feature is not part of POSIX.1, it is mentioned as a potential
implementation-specific action in the Single UNIX Specification's XSI extension.

The name of the core file varies among implementations. On FreeBSD 5.2.1, for example, the
core file is named cmdname.core, where cmdname is the name of the command corresponding
to the process that received the signal. On Mac OS X 10.3, the core file is named core.pid,
where pid is the ID of the process that received the signal. (These systems allow the core
filename to be configured via a sysct| parameter.)

Most implementations leave the core file in the current working directory of the corresponding
process; Mac OS X places all core files in / cor es instead.

The core file will not be generated if (a) the process was set-user-1D and the current user is not the
owner of the program file, or (b) the process was set-group-ID and the current user is not the group
owner of the file, (¢) the user does not have permission to write in the current working directory, (d)
the file already exists and the user does not have permission to write to it, or (e) the file is too big
(recall the RLI M T_CORE limit in Section 7.11). The permissions of the cor e file (assuming that the file
doesn't already exist) are usually user-read and user-write, although Mac OS X sets only user-read.

In Figure 10.1, the signals with a description "hardware fault" correspond to implementation-defined
hardware faults. Many of these names are taken from the original PDP-11 implementation of the
UNIX System. Check your system's manuals to determine exactly what type of error these signals
correspond to.



We now describe each of these signals in more detail.

S| GABRT

S| GALRM

SI GBUS

SI GCANCEL

SI GCHLD

S| GCONT

SI GEMT

S| GFPE

S| GFREEZE

SI GHUP

This signal is generated by calling the abort function (Section 10.17). The
process terminates abnormally.

This signal is generated when a timer set with the al ar mfunction expires (see
Section 10.10 for more details). This signal is also generated when an interval
timer set by the seti ti mer (2) function expires.

This indicates an implementation-defined hardware fault. Implementations
usually generate this signal on certain types of memory faults, as we describe
in Section 14.9.

This signal is used internally by the Solaris threads library. It is not meant for
general use.

Whenever a process terminates or stops, the S| GCHLD signal is sent to the
parent. By default, this signal is ignored, so the parent must catch this signal if
it wants to be notified whenever a child’'s status changes. The normal action in
the signal-catching function is to call one of the wai t functions to fetch the
child's process ID and termination status.

Earlier releases of System V had a similar signal named SI GCLD (without the H).
The semantics of this signal were different from those of other signals, and as
far back as SVR2, the manual page strongly discouraged its use in new
programs. (Strangely enough, this warning disappeared in the SVR3 and SVR4
versions of the manual page.) Applications should use the standard SI GCHLD
signal, but be aware that many systems define SI GCLD to be the same as

S| GCHLD for backward compatibility. If you maintain software that uses S| GCLD,
you need to check your system's manual page to see what semantics it follows.
We discuss these two signals in Section 10.7.

This job-control signal is sent to a stopped process when it is continued. The
default action is to continue a stopped process, but to ignore the signal if the
process wasn't stopped. A full-screen editor, for example, might catch this
signal and use the signal handler to make a note to redraw the terminal screen.
See Section 10.20 for additional details.

This indicates an implementation-defined hardware fault.

The name EMT comes from the PDP-11 "emulator trap" instruction. Not all
platforms support this signal. On Linux, for example, SI GEM is supported
only for selected architectures, such as SPARC, MIPS, and PA-RISC.

This signals an arithmetic exception, such as divide by 0, floating-point
overflow, and so on.

This signal is defined only by Solaris. It is used to notify processes that need to
take special action before freezing the system state, such as might happen
when a system goes into hibernation or suspended mode.

This signal is sent to the controlling process (session leader) associated with a
controlling terminal if a disconnect is detected by the terminal interface.
Referring to Figure 9.12, we see that the signal is sent to the process pointed to
by the s_| eader field in the sessi on structure. This signal is generated for this



SI A LL

SI G NFO

SI G NT

SIG O

SI G or

condition only if the terminal's CLOCAL flag is not set. (The CLOCAL flag for a
terminal is set if the attached terminal is local. The flag tells the terminal driver
to ignore all modem status lines. We describe how to set this flag in Chapter
18.)

Note that the session leader that receives this signal may be in the
background; see Figure 9.7 for an example. This differs from the normal
terminal-generated signals (interrupt, quit, and suspend), which are always
delivered to the foreground process group.

This signal is also generated if the session leader terminates. In this case, the
signal is sent to each process in the foreground process group.

This signal is commonly used to notify daemon processes (Chapter 13) to
reread their configuration files. The reason Sl GHUP is chosen for this is that a
daemon should not have a controlling terminal and would normally never
receive this signal.

This signal indicates that the process has executed an illegal hardware
instruction.

4.3BSD generated this signal from the abort function. SI GABRT is now
used for this.

This BSD signal is generated by the terminal driver when we type the status
key (often Control-T). This signal is sent to all processes in the foreground
process group (refer to Figure 9.8). This signal normally causes status
information on processes in the foreground process group to be displayed on
the terminal.

Linux doesn't provide support for SI G NFOexcept on the Alpha platform,
where it is defined to be the same value as SI GPWR.

This signal is generated by the terminal driver when we type the interrupt key
(often DELETE or Control-C). This signal is sent to all processes in the
foreground process group (refer to Figure 9.8). This signal is often used to
terminate a runaway program, especially when it's generating a lot of
unwanted output on the screen.

This signal indicates an asynchronous 1/0 event. We discuss it in Section
14.6.2.

In Figure 10.1, we labeled the default action for SI G Oas either
"terminate” or "ignore." Unfortunately, the default depends on the
system. Under System V, SI @ Ois identical to SI GPOLL, so its default
action is to terminate the process. Under BSD, the default is to ignore the
signal.

Linux 2.4.22 and Solaris 9 define SI G Oto be the same value as S| GPOLL,
so the default behavior is to terminate the process. On FreeBSD 5.2.1 and
Mac OS X 10.3, the default is to ignore the signal.

This indicates an implementation-defined hardware fault.

The name 10T comes from the PDP-11 mnemonic for the "input/output



SI &KI'LL

S| GLWP

S| GPI PE

SI GPOLL

S| GPROF

SI GPVR

SIGQUIT

S| GSEGV

TRAP" instruction. Earlier versions of System V generated this signal from
the abort function. SI GABRT is now used for this.

On FreeBSD 5.2.1, Linux 2.4.22, Mac OS X 10.3, and Solaris 9, SId OT is
defined to be the same value as SI GABRT.

This signal is one of the two that can't be caught or ignored. It provides the
system administrator with a sure way to kill any process.

This signal is used internally by the Solaris threads library, and is not available
for general use.

If we write to a pipeline but the reader has terminated, S| GPI PE is generated.
We describe pipes in Section 15.2. This signal is also generated when a process
writes to a socket of type SOCK_STREAMthat is no longer connected. We describe
sockets in Chapter 16.

This signal can be generated when a specific event occurs on a pollable device.
We describe this signal with the pol | function in Section 14.5.2. SI GPOLL
originated with SVR3, and loosely corresponds to the BSD SI G O and S| GURG
signals.

On Linux and Solaris, SI GPOLL is defined to have the same value as Sl G O.

This signal is generated when a profiling interval timer set by the seti ti mer (2)
function expires.

This signal is system dependent. Its main use is on a system that has an
uninterruptible power supply (UPS). If power fails, the UPS takes over and the
software can usually be notified. Nothing needs to be done at this point, as the
system continues running on battery power. But if the battery gets low (if the
power is off for an extended period), the software is usually notified again; at
this point, it behooves the system to shut everything down within about 1530
seconds. This is when SI GPWR should be sent. Most systems have the process
that is notified of the low-battery condition send the SI GPWR signal to theinit
process, and i ni t handles the shutdown.

Linux 2.4.22 and Solaris 9 have entries in the i ni t t ab file for this
purpose: powerfail and powerwait (Or power okwait).

In Figure 10.1, we labeled the default action for S| GPWR as either
"terminate" or "ignore." Unfortunately, the default depends on the
system. The default on Linux is to terminate the process. On Solaris, the
signal is ignored by default.

This signal is generated by the terminal driver when we type the terminal quit
key (often Control-backslash). This signal is sent to all processes in the

foreground process group (refer to Figure 9.8). This signal not only terminates
the foreground process group (as does Sl G NT), but also generates a cor e file.

This signal indicates that the process has made an invalid memory reference.

The name SEGV stands for "segmentation violation."



S| GSTKFLT

S| GSTOP

SI GSYS

S| GTERM

SI GTHAW

S| GTRAP

S| GTSTP

SI GITIN

SI GTTQU

This signal is defined only by Linux. This signal showed up in the earliest
versions of Linux, intended to be used for stack faults taken by the math
coprocessor. This signal is not generated by the kernel, but remains for
backward compatibility.

This job-control signal stops a process. It is like the interactive stop signal
(SI GTSTP), but SI GSTOP cannot be caught or ignored.

This signals an invalid system call. Somehow, the process executed a machine
instruction that the kernel thought was a system call, but the parameter with
the instruction that indicates the type of system call was invalid. This might
happen if you build a program that uses a new system call and you then try to
run the same binary on an older version of the operating system where the
system call doesn't exist.

This is the termination signal sent by the ki | | (1) command by default.

This signal is defined only by Solaris and is used to notify processes that need
to take special action when the system resumes operation after being
suspended.

This indicates an implementation-defined hardware fault.

The signal name comes from the PDP-11 TRAP instruction.
Implementations often use this signal to transfer control to a debugger
when a breakpoint instruction is executed.

This interactive stop signal is generated by the terminal driver when we type
the terminal suspend key (often Control-Z). This signal is sent to all processes
in the foreground process group (refer to Figure 9.8).

Unfortunately, the term stop has different meanings. When discussing job
control and signals, we talk about stopping and continuing jobs. The
terminal driver, however, has historically used the term stop to refer to
stopping and starting the terminal output using the Control-S and Control-
Q characters. Therefore, the terminal driver calls the character that
generates the interactive stop signal the suspend character, not the stop
character.

This signal is generated by the terminal driver when a process in a background
process group tries to read from its controlling terminal. (Refer to the
discussion of this topic in Section 9.8.) As special cases, if either (a) the reading
process is ignoring or blocking this signal or (b) the process group of the
reading process is orphaned, then the signal is not generated; instead, the read
operation returns an error with errno set to El O.

This signal is generated by the terminal driver when a process in a background
process group tries to write to its controlling terminal. (Refer to the discussion
of this topic in Section 9.8.) Unlike the SI GTTI Nsignal just described, a process
has a choice of allowing background writes to the controlling terminal. We
describe how to change this option in Chapter 18.

If background writes are not allowed, then like the SI GTTI Nsignal, there are
two special cases: if either (a) the writing process is ignoring or blocking this
signal or (b) the process group of the writing process is orphaned, then the



SI GURG

S| GUSR1L

S| GUSR2

S| GVTALRM

SI GMAI TI NG

SI GW NCH

S| GXCPU

S| GXFSZ

SI GXRES

signal is not generated; instead, the write operation returns an error with errno
set to El O.

Regardless of whether background writes are allowed, certain terminal
operations (other than writing) can also generate the S| GTTOUsignal:
tcsetattr, tcsendbreak, tcdrain, tcflush, tcflow, and tcset pgrp. We describe
these terminal operations in Chapter 18.

This signal notifies the process that an urgent condition has occurred. This
signal is optionally generated when out-of-band data is received on a network
connection.

This is a user-defined signal, for use in application programs.

This is another user-defined signal, similar to SI GUSR1, for use in application
programs.

This signal is generated when a virtual interval timer set by the setitiner (2)
function expires.

This signal is used internally by the Solaris threads library, and is not available
for general use.

The kernel maintains the size of the window associated with each terminal and
pseudo terminal. A process can get and set the window size with the i oct |
function, which we describe in Section 18.12. If a process changes the window
size from its previous value using the i oct | set-window-size command, the
kernel generates the S| GA NCH signal for the foreground process group.

The Single UNIX Specification supports the concept of resource limits as an XSI
extension; refer to Section 7.11. If the process exceeds its soft CPU time limit,
the SI GXCPU signal is generated.

In Figure 10.1, we labeled the default action for SI GXCPU as either
"terminate with a core file" or "ignore." Unfortunately, the default depends
on the operating system. Linux 2.4.22 and Solaris 9 support a default
action of terminate with a core file, whereas FreeBSD 5.2.1 and Mac OS X
10.3 support a default action of ignore. The Single UNIX Specification
requires that the default action be to terminate the process abnormally.
Whether a core file is generated is left up to the implementation.

This signal is generated if the process exceeds its soft file size limit; refer to
Section 7.11.

Just as with SI GXCPU, the default action taken with S| GXFSZ depends on the
operating system. On Linux 2.4.22 and Solaris 9, the default is to
terminate the process and create a core file. On FreeBSD 5.2.1 and Mac
OS X 10.3, the default is to be ignored. The Single UNIX Specification
requires that the default action be to terminate the process abnormally.
Whether a core file is generated is left up to the implementation.

This signal is defined only by Solaris. This signal is optionally used to notify
processes that have exceeded a preconfigured resource value. The Solaris
resource control mechanism is a general facility for controlling the use of
shared resources among independent application sets.
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10.3. si gnal Function

The simplest interface to the signal features of the UNIX System is the si gnal function.

#i ncl ude <signal . h>

voi d (*signal (int signo, void (*func)(int)))(int);

Returns: previous disposition of signal (see following) if OK, SI G ERRon error

The si gnal function is defined by ISO C, which doesn't involve multiple processes, process
groups, terminal 1/0, and the like. Therefore, its definition of signals is vague enough to be
almost useless for UNIX systems.

Implementations derived from UNIX System V support the si gnal function, but it provides the
old unreliable-signal semantics. (We describe these older semantics in Section 10.4.) This
function provides backward compatibility for applications that require the older semantics. New
applications should not use these unreliable signals.

4.4BSD also provides the si gnal function, but it is defined in terms of the si gacti on function
(which we describe in Section 10.14), so using it under 4.4BSD provides the newer reliable-
signal semantics. FreeBSD 5.2.1 and Mac OS X 10.3 follow this strategy.

Solaris 9 has roots in both System V and BSD, but it chooses to follow the System V semantics
for the si gnal function.

On Linux 2.4.22, the semantic of si gnal can follow either the BSD or System V semantics,
depending on the version of the C library and how you compile your application.

Because the semantics of si gnal differ among implementations, it is better to use the si gacti on
function instead. When we describe the si gacti on function in Section 10.14, we provide an
implementation of si gnal that uses it. All the examples in this text use the si gnal function that
we show in Figure 10.18.

The signo argument is just the name of the signal from Figure 10.1. The value of func is (a) the
constant SI G | G\, (b) the constant SI G DFL, or (c) the address of a function to be called when the
signal occurs. If we specify SI G | G\, we are telling the system to ignore the signal. (Remember that
we cannot ignore the two signals SI &KI LL and SI GSTOP.) When we specify SI G DFL, we are setting the
action associated with the signal to its default value (see the final column in Figure 10.1). When we
specify the address of a function to be called when the signal occurs, we are arranging to "catch" the
signal. We call the function either the signal handler or the signal-catching function.



The prototype for the si gnal function states that the function requires two arguments and returns a
pointer to a function that returns nothing (voi d). The si gnal function's first argument, signo, is an
integer. The second argument is a pointer to a function that takes a single integer argument and
returns nothing. The function whose address is returned as the value of si gnal takes a single integer
argument (the final (i nt)). In plain English, this declaration says that the signal handler is passed a
single integer argument (the signal number) and that it returns nothing. When we call si gnal to
establish the signal handler, the second argument is a pointer to the function. The return value from
si gnal is the pointer to the previous signal handler.

Many systems call the signal handler with additional, implementation-dependent arguments. We
discuss this further in Section 10.14.

The perplexing si gnal function prototype shown at the beginning of this section can be made much
simpler through the use of the following t ypedef [Plauger 1992]:

typedef void Sigfunc(int);

Then the prototype becomes

Si gfunc *signal (int, Sigfunc *);

We've included this t ypedef in apue. h (Appendix B) and use it with the functions in this chapter.

If 