Università degli Studi di Salerno. Corso di Laurea in Informatica. Corso di Ricerca Operativa A.A. 2010-2011 Esame del 24/01/2011

Nome	Cognome
Matricola/	

1. (3 punti) Scrivere il duale del seguente problema di programmazione lineare:

min
$$z = 14x_1 + 13x_2 + 11x_3 + 13x_4 + 13x_5 + 12x_6$$

 $x_1 + x_2 + x_3 = 1200$
 $x_4 + x_5 + x_6 >= 0$ 1000
 $x_1 + x_4 = 1000$
 $x_2 + x_5 <= 700$
 $x_3 + x_6 = 500$

$$x_1$$
 n.v., $x_i \ge 0$ per ogni $i=2,...6$

2. (6 punti) L'Ente Nazionale Parchi sta pianificando lo sviluppo di una zona di sua competenza. Ci sono cinque zone nell'area destinate all'accesso veicolare. Queste zone e le distanze in km tra di esse sono illustrate nella tabella. Per avere il minor impatto possibile sull'ambiente, l'Ente vuole minimizzare il numero totale di km da pavimentare per garantire i collegamenti veicolari tra le 5 aree. Determinare quali collegamenti dovrebbero essere pavimentati per raggiungere l'obiettivo prefissato.

	Area 1	Area 2	Area 3	Area 4	Area 5
Area 1		7.1	19.5	19.1	25.7
Area 2	7.1		8.3	16.2	13.2
Area 3	19.5	8.3		18.1	5.2
Area 4	19.1	16.2	18.1		17.2
Area 5	25.7	13.2	5.2	17.2	•••

3. Dato il seguente problema di programmazione lineare :

- a. (3 punti) Risolvere il problema graficamente.
- b. (4 punti) Applicare il simplesso per trovare la soluzione ottima del problema
- c. (3 punti) Applicare l'analisi di sensitività per determinare il range di variabilità dei coefficienti di costo della funzione obiettivo per cui la soluzione ottima trovata al punto b rimanga ottima.
- **4.** Dato il seguente problema di programmazione lineare :

$$\max x_1 + 2x_2 + 3x_3 + 4x_4$$

$$x_1 + 2x_2 + x_3 + 3x_4 + x_5 = 9$$

$$2x_1 + x_2 + x_3 + 3x_4 + x_6 = 9$$

$$-x_1 + x_2 + x_3 + x_7 = 0$$

$$x_i >= 0 \text{ per oqni i=1,...7}$$

- a. (2 punto) Scrivere il sistema dei vincoli del problema in forma vettoriale
- b. (4 punti) Determinare per ognuno dei seguenti vettori se costituisce una soluzione ammissibile non basica per il problema, ammissibile basica o inammissibile: A=(3,3,0,0,0,0,0), B=(2,2,0,1,0,0,0), C=(0,0,0,3,0,0,0), D=(0,0,0,0,9,9,0), E=(1,0,0,0,8,7,1), F=(0,0,9,0,0,9,9).
- c. (2 punti) Tra le soluzioni basiche individuate al punto b, ne esiste qualcuna degenere? Perchè?
- 5. (3 punti) Determinare graficamente se il vettore A=(1,2) è combinazione convessa dei vettori B=(1,1) e C=(2,-1)