Lezioni di Ricerca Operativa

Corso di Laurea in Informatica Università di Salerno

Lezione nº 16

Teoria della dualità:

- Esempio

Prof. Cerulli – Dott.ssa Gentili – Dott. Carrabs

Esercizio

(P) min
$$x_1 - \frac{3}{2}x_2$$

 $-x_1 + x_2 \le 4$
 $-\frac{1}{2}x_1 + x_2 \le 5$
 $x \ge 0$

- a) Data la base ottima $B=\{2,1\}$ verificare se è ammissibile.
- b) Verificare se è ottima.
- c) Determinare la soluzione duale associata a tale base.
- d) Verificare attraverso il teorema della dualità forte se la coppia di soluzioni primale/duale è ottima.
- e) Verificare attraverso il teorema degli scarti complementari se la coppia di soluzioni primale/duale è ottima.
- f) Risolvere graficamente il problema primale.
- g) Risolvere graficamente il problema duale.
- h) Riscrivere il problema primale applicando il teorema della rappresentazione.
- i) Risolvere il problema ottenuto al punto h) e determinare dalla soluzione ottima di questo problema il vettore x ottimo del problema (P).

Esercizio a) Data la base ottima B={ 2,1}, determinare la soluzione duale corrispondente al vertice ottimo;

Base ottima B={ 2,1}
$$A_B = \begin{bmatrix} 1 & -1 \\ 1 & -1/2 \end{bmatrix}$$

Calcolo dell'inversa:

$$w^* = \underline{c}_B^T A_B^{-1}$$
 $\underline{c}_B^T = (-3/2 \ 1)$ $A_B^{-1} = \begin{vmatrix} -1 & 2 \\ -2 & 2 \end{vmatrix}$

$$\underline{w}^{*T} = (-3/2, 1) \begin{bmatrix} -1 & 2 \\ -2 & 2 \end{bmatrix} = (-1/2, -1)$$

Esercizio

a) Dopo aver formulato il duale del problema di programmazione lineare, scrivere le condizioni degli scarti complementari relative alla coppia di problemi individuata. Dire se la soluzione duale w^T=[-1/2 -1] è ottima giustificandone la risposta.

$$\min z = x_1 - \frac{3}{2}x_2 \qquad \max g = 4w_1 + 5w_2$$

$$-x_1 + x_2 \le 4 \qquad -w_1 - \frac{1}{2}w_2 \le 1$$

$$-\frac{1}{2}x_1 + x_2 \le 5 \qquad w_1 + w_2 \le -\frac{3}{2}$$

$$x_1 \ge 0 \quad x_2 \ge 0 \qquad w_1 \le 0 \quad w_2 \le 0$$

Un altro Esempio: Massimizzazione del Profitto.

 Una azienda produce due tipi di mangime A e B, entrambi costituiti da una miscela di carne e cereali secondo i seguenti rapporti:

		Prodotti			
		Α	В		
	Cereali	1 Kg	1.5 Kg		
materie prime	Carne	2 Kg	1 Kg		

La disponibilità giornaliera di cereali è pari a 240 Kg, mentre quella di carne è di 180 Kg.

L'azienda per produrre il mangime A usa una macchina che ogni giorno produce al più 110 confezioni. • Il ricavo unitario per ciascuno dei due mangimi è:

Prodotto A: 560 Prodotto B: 420

Problema:

determinare le quantità dei due mangimi che debbono essere prodotte giornalmente in modo da rendere massimo il profitto. Introduciamo due variabili che rappresentano le quantità di prodotto 1 e prodotto 2 confezionate:

confezioni di prodotto 1: x1 confezioni di prodotto 2: x2.

(P)
$$\max z = 560x_1 + 420x_2$$
 $x_1 + 1,5x_2 \le 240$ Cereali $2x_1 + x_2 \le 180$ Carne $x_1 \le 110$ Macchina $x_1 \ge 0, x_2 \ge 0$.

Supponiamo che un'altra azienda chieda alla prima di vendergli parte della carne o dei cereali. Qual'è il prezzo minimo al quale la prima azienda deve vendere la carne e i cereali facendo rimanere inalterato il proprio profitto?

Per rispondere a questa domanda risolviamo il problema duale:

Problema (D):

$$\min g = 240w_1 + 180w_2 + 110w_3$$

$$w_1 + 2w_2 + w_3 \ge 560$$

$$1,5w_1 + w_2 \ge 420$$

$$w_1 \ge 0, w_2 \ge 0, w_3 \ge 0.$$

La soluzione ottima del problema primale (P) è:

$$x_1^* = 15$$
; $x_2^* = 150$; $x_3^* = x_4^* = 0$; $x_5^* = 95$.

La soluzione ottima del problema duale (D) è:

$$w_1^* = 140; \quad w_2^* = 210; \quad w_3^* = w_4^* = w_5^* = 0.$$

Vediamo adesso il significato delle <u>x</u> e delle <u>w</u> considerando la seguente tabella:

Cereali	Carne	x1	x2	x3	x4	x5	w1	w2	w3	w4	w5	$z^* = g^*$
240	180	15	150	0	0	95	140	210	0	0	0	71400
239	180	15,5	149	0	0	94,5	140	210	0	0	0	71260
241	180	14,5	151	0	0	95,5	140	210	0	0	0	71540
240	179	14,25	150,5	0	0	95,75	140	210	0	0	0	71190
240	181	15,75	149,5	0	0	94,25	140	210	0	0	0	71610
250	200	25	150	0	0	85	140	210	0	0	0	77000
250	250	110	93,3	0	36,6	0	280	0	280	0	0	100800

Riassumento

- Le variabili duali <u>w</u> rappresentano i "prezzi ombra", ovvero i prezzi minimi a cui bisogna vendere le risorse per mantenere invariato il profitto.
- I prezzi ombra sono validi fino a quando non viene cambiata la base ottima (quando ciò avviene devono essere ricalcolati).
- Quando un vincolo è attivo la risorsa ad esso associata è scarsa. La variabile duale corrispondente, a meno di degenerazione, sarà maggiore di zero. Se invece la risorsa è abbondante sicuramente la variabile duale ad essa associata è nulla.