
CHAPTER 11 (corrisponde al cap. 10 italiano)

Data Link Control
Solutions to Review Questions and Exercises
Review Questions
1. The two main functions of the data link layer are data link control and media

access control. Data link control deals with the design and procedures for commu-
nication between two adjacent nodes: node-to-node communication. Media access
control deals with procedures for sharing the link.

2. The data link layer needs to pack bits into frames. Framing divides a message into
smaller entities to make flow and error control more manageable.

3. In a byte-oriented protocol, data to be carried are 8-bit characters from a coding
system. Character-oriented protocols were popular when only text was exchanged
by the data link layers. In a bit-oriented protocol, the data section of a frame is a
sequence of bits. Bit-oriented protocols are more popular today because we need to
send text, graphic, audio, and video which can be better represented by a bit pat-
tern than a sequence of characters.

4. Character-oriented protocols use byte-stuffing to be able to carry an 8-bit pattern
that is the same as the flag. Byte-stuffing adds an extra character to the data section
of the frame to escape the flag-like pattern. Bit-oriented protocols use bit-stuffing
to be able to carry patterns similar to the flag. Bit-stuffing adds an extra bit to the
data section of the frame whenever a sequence of bits is similar to the flag.

5. Flow control refers to a set of procedures used to restrict the amount of data that
the sender can send before waiting for acknowledgment. Error control refers to a
set of procedures used to detect and correct errors.

6. In this chapter, we discussed two protocols for noiseless channels: the Simplest
and the Stop-and-Wait.

7. In this chapter, we discussed three protocols for noisy channels: the Stop-and-Wait
ARQ, the Go-Back-N ARQ, and the Selective-Repeat ARQ.

8. Go-Back-N ARQ is more efficient than Stop-and-Wait ARQ. The second uses
pipelining, the first does not. In the first, we need to wait for an acknowledgment
for each frame before sending the next one. In the second we can send several
frames before receiving an acknowledgment.
1

2

9. In the Go-Back-N ARQ Protocol, we can send several frames before receiving
acknowledgments. If a frame is lost or damaged, all outstanding frames sent before
that frame are resent. In the Selective- Repeat ARQ protocol we avoid unnecessary
transmission by sending only the frames that are corrupted or missing. Both Go-
Back-N and Selective-Repeat Protocols use sliding windows. In Go-Back-N ARQ,
if m is the number of bits for the sequence number, then the size of the send win-
dow must be at most 2m−1; the size of the receiver window is always 1. In Selec-
tive-Repeat ARQ, the size of the sender and receiver window must be at most 2m−1.

10. HDLC is a bit-oriented protocol for communication over point-to-point and multi-
point links. PPP is a byte-oriented protocol used for point-to-point links.

11. Piggybacking is used to improve the efficiency of bidirectional transmission.
When a frame is carrying data from A to B, it can also carry control information
about frames from B; when a frame is carrying data from B to A, it can also carry
control information about frames from A.

12. Only Go-Back-N and Selective-Repeat protocols use pipelining.

Exercises
13. We give a very simple solution. Every time we encounter an ESC or flag character,

we insert an extra ESC character in the data part of the frame (see Figure 11.1).

14. Figure 11.2 shows data to be encapsulated in the frame.

15. We write two very simple algorithms. We assume that a frame is made of a one-
byte beginning flag, variable-length data (possibly byte-stuffed), and a one-byte
ending flag; we ignore the header and trailer. We also assume that there is no error
during the transmission.
a. Algorithm 11.1 can be used at the sender site. It inserts one ESC character

whenever a flag or ESC character is encountered.

Figure 11.1 Solution to Exercise 13

Figure 11.2 Solution to exercise 14

Algorithm 11.1 Sender’s site solution to Exercise 15
InsertFrame (one-byte flag); // Insert beginning flag
while (more characters in data buffer)
{

FlagESCESC ESC ESC ESC ESC ESC FlagESC ESC ESC

0 0 0 1 1 1 1 1 0 1 1 0 0 1 1 1 1 1 0 0 1 0 0 0 1 1 1 1 1 0 1 1 1 1 1 0 1 0 0 0 0 1 1 1 1 1 0

3

b. Algorithm 11.2 can be used at the receiver site.

16. We write two very simple algorithms. We assume that a frame is made of an 8-bit
flag (01111110), variable-length data (possibly bit-stuffed), and an 8-bit ending
flag (0111110); we ignore header and trailer. We also assume that there is no error
during the transmission.
a. Algorithm 11.3 can be used at the sender site.

 ExtractBuffer (character);
 if (character is flag or ESC) InsertFrame (ESC); // Byte stuff
 InsertFrame (character);
}
InsertFrame (one-byte flag); // Insert ending flag

Algorithm 11.2 Receiver’s site solution to Exercise 15
ExtractFrame (character); // Extract beginning flag
Discard (character); // Discard beginning flag
while (more characters in the frame)
{
 ExtractFrame (character);
 if (character = = flag) exit(); // Ending flag is extracted

 if (character = = ESC)
 {
 Discard (character); // Un-stuff
 ExtractFrame (character); // Extract flag or ESC as data
 }
 InsertBuffer (character);
}
Discard (character); // Discard ending flag

Algorithm 11.3 Sender’s site solution to Exercise 16
InsertFrame (8-bit flag); // Insert beginning flag
counter = 0;
while (more bits in data buffer)
{
 ExtractBuffer (bit);
 InsertFrame (bit);
 if (bit = = 1) counter = counter + 1;
 else counter = 0;

 if (counter = = 5)
 {
 InsertFrame (bit 0); // Bit stuff
 counter = 0;
 }
}
InsertFrame (8-bit flag); // Insert ending flag

Algorithm 11.1 Sender’s site solution to Exercise 15

4

b. Algorithm 11.4 can be used at the receiver’s site. Note that when the algorithm
exits from the loop, there are six bits of the ending flag in the buffer, which need
to be removed after the loop.

17. A five-bit sequence number can create sequence numbers from 0 to 31. The
sequence number in the Nth packet is (N mod 32). This means that the 101th
packet has the sequence number (101 mod 32) or 5.

18.

19. See Algorithm 11.5. Note that we have assumed that both events (request and
arrival) have the same priority.

Algorithm 11.4 Receiver’s site solution to Exercise 16
ExtractFrame (8 bits); // Extract beginning flag
counter = 0;
while (more bits in frame)
{
 ExtractFrame (bit);
 if (counter = = 5)
 {
 if (bit is 0) Discard (bit); counter = 0; // Un-stuff
 if (bit is 1) exit (); // Flag is encountered
 }

 if (counter < 5)
 {
 if (bit is 0) counter = 0;
 if (bit is 1) counter = counter + 1;
 InsertBuffer (bit);
 }
}
ExtractBuffer (last 6 bits); // These bits are part of flag
Discard (6 bits);

Stop-And-Wait ARQ send window = 1 receive window = 1
Go-Back-N ARQ send window = 25 −1 = 31 receive window = 1
Selective-Repeat ARQ send window = 24 = 16 receive window = 16

Algorithm 11.5 Algorithm for bidirectional Simplest Protocol
while (true) // Repeat forever
{
 WaitForEvent (); // Sleep until an event occurs
 if (Event (RequestToSend)) // There is a packet to send
 {
 GetData ();
 MakeFrame ();
 SendFrame (); // Send the frame
 }

 if (Event (ArrivalNotification)) // Data frame arrived
 {
 ReceiveFrame ();

5

20. See Algorithm 11.6. Note that in this algorithm, we assume that the arrival of a
frame by a site also means the acknowledgment of the previous frame sent by the
same site.

21. Algorithm 11.7 shows one design. This is a very simple implementation in which
we assume that both sites always have data to send.

 ExtractData ();
 DeliverData (); // Deliver data to network layer
 }
} // End Repeat forever

Algorithm 11.6
while (true) // Repeat forever
{
 canSend = true;
 WaitForEvent (); // Sleep until an event occurs
 if (Event (RequestToSend) AND canSend) // A packet can be sent
 {
 GetData ();
 MakeFrame ();
 SendFrame (); // Send the frame
 canSend = false;
 }

 if (Event (ArrivalNotification)) // Data frame arrived
 {
 ReceiveFrame ();
 ExtractData ();
 DeliverData (); // Deliver data to network layer
 canSend = true;
 }
} // End Repeat forever

Algorithm 11.7 A bidirectional algorithm for Stop-And-Wait ARQ
Sn = 0; // Frame 0 should be sent first
Rn = 0; // Frame 0 expected to arrive first
canSend = true; // Allow the first request to go
while (true) // Repeat forever
{
 WaitForEvent (); // Sleep until an event occurs
 if (Event (RequestToSend) AND canSend) // Packet to send
 {
 GetData ();
 MakeFrame (Sn , Rn); // The seqNo of frame is Sn
 StoreFrame (Sn , Rn); //Keep copy for possible resending
 SendFrame (Sn , Rn);
 StartTimer ();
 Sn = (Sn + 1) mod 2;
 canSend = false;
 }

Algorithm 11.5 Algorithm for bidirectional Simplest Protocol

6

22. Algorithm 11.8 shows one design. This is a very simple implementation in which
we assume that both sites always have data to send.

 if (Event (ArrivalNotification)) // Data frame arrives
 {
 ReceiveFrame ();
 if (corrupted (frame)) sleep();
 if (seqNo = = Rn) // Valid data frame
 {
 ExtractData ();
 DeliverData (); // Deliver data
 Rn = (Rn + 1) mod 2;
 }
 if (ackNo = = Sn) // Valid ACK
 {
 StopTimer ();
 PurgeFrame (Sn−1 , Rn−1); //Copy is not needed
 canSend = true;
 }
 }

 if (Event(TimeOut)) // The timer expired
 {
 StartTimer ();
 ResendFrame (Sn-1 , Rn-1); // Resend a copy
 }
} // End Repeat forever

Algorithm 11.8 Bidirectional algorithm for Go-Back-And-N algorithm
Sw = 2m − 1;
Sf = 0;
Sn = 0;
Rn = 0;
while (true) // Repeat forever
{
 WaitForEvent ();
 if (Event (RequestToSend)) // There is a packet to send
 {
 if (Sn − Sf >= Sw) Sleep(); // If window is full
 GetData();
 MakeFrame (Sn , Rn);
 StoreFrame (Sn, Rn);
 SendFrame (Sn, Rn);
 Sn = Sn + 1;
 if (timer not running) StartTimer ();
 }

 if (Event (ArrivalNotification))
 {
 Receive (Frame);
 if (corrupted (ACK)) Sleep();
 if ((ackNo > Sf) AND (ackNo <= Sn)) // If a valid ACK
 {

Algorithm 11.7 A bidirectional algorithm for Stop-And-Wait ARQ

7

23. Algorithm 11.9 shows one design. This is a very simple implementation in which
we assume that both sites always have data to send.

 while (Sf <= ackNo)
 {
 PurgeFrame (Sf);
 Sf = Sf + 1;
 }
 StopTimer ();
 }
 if (seqNo = = Rn) // If expected frame
 {
 DeliverData (); // Deliver data
 Rn = Rn + 1; // Slide window one slot
 SendACK (Rn);
 }
 }

 if (Event (TimeOut)) // The timer expires
 {
 StartTimer ();
 Temp = Sf;
 while (Temp < Sn);
 {
 SendFrame (Sf);
 Sf = Sf + 1;
 }
 }
} // End Repeat forever

Algorithm 11.9 A bidirectional algorithm for Selective-Repeat ARQ
Sw = 2m−1;
Sf = 0;
Sn = 0;
Rn = 0;
NakSent = false;
AckNeeded = false;
Repeat (for all slots);
Marked (slot) = false;
 while (true) // Repeat forever
 {
 WaitForEvent ();
 if (Event (RequestToSend)) // There is a packet to send
 {
 if (Sn−Sf >= Sw) Sleep (); // If window is full
 GetData ();
 MakeFrame (Sn , Rn);
 StoreFrame (Sn , Rn);
 SendFrame (Sn , Rn);
 Sn = Sn + 1;
 StartTimer (Sn);
 }

Algorithm 11.8 Bidirectional algorithm for Go-Back-And-N algorithm

8

 if (Event (ArrivalNotification))
 {
 Receive (frame); // Receive Data or NAK
 if (FrameType is NAK)
 {
 if (corrupted (frame)) Sleep();
 if (nakNo between Sf and Sn)
 {
 resend (nakNo);
 StartTimer (nakNo);
 }
 }

 if (FrameType is Data)
 {
 if (corrupted (Frame)) AND (NOT NakSent)
 {
 SendNAK (Rn);
 NakSent = true;
 Sleep();
 }

 if (ackNo between Sf and Sn)
 {
 while (Sf < ackNo)
 {
 Purge (Sf);
 StopTimer (Sf);
 Sf = Sf + 1;
 }
 }

 if ((seqNo <> Rn) AND (NOT NakSent))
 {
 SendNAK (Rn);
 NakSent = true;
 }

 if ((seqNo in window) AND (NOT Marked (seqNo))
 {
 StoreFrame (seqNo);
 Marked (seqNo) = true;
 while (Marked (Rn))
 {
 DeliverData (Rn);
 Purge (Rn);
 Rn = Rn + 1;
 AckNeeded = true;
 }
 }
 } // End if (FrameType is Data)
 } // End if (arrival event)

 if (Event (TimeOut (t))) // The timer expires

Algorithm 11.9 A bidirectional algorithm for Selective-Repeat ARQ

9

24. State Sn = 0 means the sender has sent Frame 1, but is waiting for the acknowledg-
ment. State Sn = 1 means the sender has sent Frame 0, but is waiting for the
acknowledgment. We can then say

25. State Rn = 0 means the receiver is waiting for Frame 0. State Rn = 1 means the
receiver is waiting for Frame 1. We can then say

26. We can say that in this case, each state defines that a frame or an acknowledgment
in transit. In other words,
(1 , 0) → Frame 0 is in transit (1 , 1) → ACK 1 is in transit
(0 , 1) → Frame 1 is in transit (0 , 0) → ACK 0 is in transit

27. Figure 11.3 shows the situation. Since there are no lost or damaged frames and the
round trip time is less than the time-out, each frame is sent only once.

 {
 StartTimer (t);
 SendFrame (t);
 }
} // End Repeat forever

Event A: Sender Site: ACK 0 received.
Event B: Sender Site: ACK 1 received.

Event A: Receiver Site: Frame 0 received.
Event B: Receiver Site: Frame 1 received.

Event A: Receiver Site: Frame 0 arrives and ACK 1 is sent.
Event B: Sender Site: ACK 1 arrives and Frame 1 is sent.
Event C: Receiver Site: Frame 1 arrives and ACK 0 is sent.
Event D: Sender Site: ACK 0 arrives and Frame 0 is sent.

Figure 11.3 Solution to Exercise 27

Algorithm 11.9 A bidirectional algorithm for Selective-Repeat ARQ

Frame 0

ACK 1

Frame 1

Sender ReceiverA B

Start

Stop
4 ms

Start

Stop
4 ms

Start

Stop
4 ms

Start

Stop
4 ms

Frame 0

Frame 1

ACK 0

ACK 0

ACK 1

10
28. Figure 11.4 shows the situation. Here, we have a special situation. Although no
frame is damaged or lost, the sender sends each frame twice. The reason is that the
the acknowledgement for each frame reaches the sender after its timer expires. The
sender thinks that the frame is lost.

29. Figure 11.5 shows the situation. In this case, only the first frame is resent; the
acknowledgment for other frames arrived on time.

Figure 11.4 Solution to Exercise 28

Figure 11.5 Solution to Exercise 29

Start

Discarded

Time-out, restart

Time-out, restart

Frame 0

Frame 0

ACK 1

ACK 0

Sender Receiver

Discarded

Discarded

Discarded

Start
Stop

Stop

Time-out, restart

Start

Stop

A B

Frame 1

Frame 1

Frame 0

Frame 0
ACK 1

4 ms
6 ms

4 ms
6 ms

4 ms
6 ms

Time-out, restart

Start

Stop

4 ms
6 ms Frame 1

Frame 1

ACK 0

Frame 0

Frame 1

Sender ReceiverA B

Start

Stop

Stop

4 ms

4 ms

Start

Stop
4 ms

Start

Stop
4 ms

Frame 0

Frame 1

ACK 0

Frame 0

ACK 0

ACK 1

ACK 1

Start

Time-out, restart

6 ms

11
30. We need to send 1000 frames. We ignore the overhead due to the header and
trailer.

31. In the worst case, we send the a full window of size 7 and then wait for the
acknowledgment of the whole window. We need to send 1000/7 ≈ 143 windows.
We ignore the overhead due to the header and trailer.

32. In the worst case, we send the a full window of size 4 and then wait for the
acknowledgment of the whole window. We need to send 1000/4 = 250 windows.
We ignore the overhead due to the header and trailer.

Data frame Transmission time = 1000 bits / 1,000,000 bits = 1 ms
Data frame trip time = 5000 km / 200,000 km = 25 ms
ACK transmission time = 0 (It is usually negligible)
ACK trip time = 5000 km / 200,000 km = 25 ms
Delay for 1 frame = 1 + 25 + 25 = 51 ms.
Total delay = 1000 × 51 = 51 s

Transmission time for one window = 7000 bits / 1,000,000 bits = 7 ms
Data frame trip time = 5000 km / 200,000 km = 25 ms
ACK transmission time = 0 (It is usually negligible)
ACK trip time = 5000 km / 200,000 km = 25 ms
Delay for 1 window = 7 + 25 + 25 = 57 ms.
Total delay = 143 × 57 ms = 8.151 s

Transmission time for one window = 4000 bits / 1,000,000 bits = 4 ms
Data frame trip time = 5000 km / 200,000 km = 25 ms
ACK transmission time = 0 (It is usually negligible)
ACK trip time = 5000 km / 200,000 km = 25 ms
Delay for 1 window = 4 + 25 + 25 = 54 ms.
Total delay = 250 × 54 ms = 13.5 s

12

	Chapter 11
	Data Link Control Solutions to Review Questions and Exercises
	Review Questions
	1. The two main functions of the data link layer are data link control and media access control. Data link control deals with th...
	2. The data link layer needs to pack bits into frames. Framing divides a message into smaller entities to make flow and error control more manageable.
	3. In a byte-oriented protocol, data to be carried are 8-bit characters from a coding system. Character-oriented protocols were ...
	4. Character-oriented protocols use byte-stuffing to be able to carry an 8-bit pattern that is the same as the flag. Byte-stuffi...
	5. Flow control refers to a set of procedures used to restrict the amount of data that the sender can send before waiting for acknowledgment. Error control refers to a set of procedures used to detect and correct errors.
	6. In this chapter, we discussed two protocols for noiseless channels: the Simplest and the Stop-and-Wait.
	7. In this chapter, we discussed three protocols for noisy channels: the Stop-and-Wait ARQ, the Go-Back-N ARQ, and the Selective-Repeat ARQ.
	8. Go-Back-N ARQ is more efficient than Stop-and-Wait ARQ. The second uses pipelining, the first does not. In the first, we need...
	9. In the Go-Back-N ARQ Protocol, we can send several frames before receiving acknowledgments. If a frame is lost or damaged, al...
	10. HDLC is a bit-oriented protocol for communication over point-to-point and multipoint links. PPP is a byte-oriented protocol used for point-to-point links.
	11. Piggybacking is used to improve the efficiency of bidirectional transmission. When a frame is carrying data from A to B, it ...
	12. Only Go-Back-N and Selective-Repeat protocols use pipelining.

	Exercises
	13. We give a very simple solution. Every time we encounter an ESC or flag character, we insert an extra ESC character in the data part of the frame (see Figure 11.1).
	Figure 11.1 Solution to Exercise 13

	14. Figure 11.2 shows data to be encapsulated in the frame.
	Figure 11.2 Solution to exercise 14

	15. We write two very simple algorithms. We assume that a frame is made of a one- byte beginning flag, variable-length data (pos...
	a. Algorithm 11.1 can be used at the sender site. It inserts one ESC character whenever a flag or ESC character is encountered.

	Algorithm 11.1 Sender’s site solution to Exercise 15
	b. Algorithm 11.2 can be used at the receiver site.

	Algorithm 11.2 Receiver’s site solution to Exercise 15
	16. We write two very simple algorithms. We assume that a frame is made of an 8-bit flag (01111110), variable-length data (possi...
	a. Algorithm 11.3 can be used at the sender site.

	Algorithm 11.3 Sender’s site solution to Exercise 16
	b. Algorithm 11.4 can be used at the receiver’s site. Note that when the algorithm exits from the loop, there are six bits of the ending flag in the buffer, which need to be removed after the loop.

	Algorithm 11.4 Receiver’s site solution to Exercise 16
	17. A five-bit sequence number can create sequence numbers from 0 to 31. The sequence number in the Nth packet is (N mod 32). This means that the 101th packet has the sequence number (101 mod 32) or 5.
	18.
	19. See Algorithm 11.5. Note that we have assumed that both events (request and arrival) have the same priority.

	Algorithm 11.5 Algorithm for bidirectional Simplest Protocol
	20. See Algorithm 11.6. Note that in this algorithm, we assume that the arrival of a frame by a site also means the acknowledgment of the previous frame sent by the same site.

	Algorithm 11.6
	21. Algorithm 11.7 shows one design. This is a very simple implementation in which we assume that both sites always have data to send.

	Algorithm 11.7 A bidirectional algorithm for Stop-And-Wait ARQ
	22. Algorithm 11.8 shows one design. This is a very simple implementation in which we assume that both sites always have data to send.

	Algorithm 11.8 Bidirectional algorithm for Go-Back-And-N algorithm
	23. Algorithm 11.9 shows one design. This is a very simple implementation in which we assume that both sites always have data to send.

	Algorithm 11.9 A bidirectional algorithm for Selective-Repeat ARQ
	24. State Sn = 0 means the sender has sent Frame 1, but is waiting for the acknowledgment. State Sn = 1 means the sender has sent Frame 0, but is waiting for the acknowledgment. We can then say
	25. State Rn = 0 means the receiver is waiting for Frame 0. State Rn = 1 means the receiver is waiting for Frame 1. We can then say
	26. We can say that in this case, each state defines that a frame or an acknowledgment in transit. In other words, (1 , 0) Æ Frame 0 is in transit (1 , 1) Æ ACK 1 is in transit (0 , 1) Æ Frame 1 is in transit (0 , 0) Æ ACK 0 is in transit
	27. Figure 11.3 shows the situation. Since there are no lost or damaged frames and the round trip time is less than the time-out, each frame is sent only once.
	Figure 11.3 Solution to Exercise 27

	28. Figure 11.4 shows the situation. Here, we have a special situation. Although no frame is damaged or lost, the sender sends e...
	Figure 11.4 Solution to Exercise 28

	29. Figure 11.5 shows the situation. In this case, only the first frame is resent; the acknowledgment for other frames arrived on time.
	Figure 11.5 Solution to Exercise 29

	30. We need to send 1000 frames. We ignore the overhead due to the header and trailer.
	31. In the worst case, we send the a full window of size 7 and then wait for the acknowledgment of the whole window. We need to send 1000/7 ª 143 windows. We ignore the overhead due to the header and trailer.
	32. In the worst case, we send the a full window of size 4 and then wait for the acknowledgment of the whole window. We need to send 1000/4 = 250 windows. We ignore the overhead due to the header and trailer.

