CHAPTER 10 (corrisponde al cap. 9 italiano)
Error Detection and Correction

Solutions to Review Questions and Exercises

Review Questions

1.

In a single bit error only one bit of a data unit is corrupted; in a burst error more
than one bit is corrupted (not necessarily contiguous).

Redundancy is a technique of adding extra bits to each data unit to determine the
accuracy of transmission.

. In forward error correction, the receiver tries to correct the corrupted codeword;

in error detection by retransmission, the corrupted message is discarded (the
sender needs to retransmit the message).

A linear block code is a block code in which the exclusive-or of any two code-
words results in another codeword. A cyclic code is a linear block code in which
the rotation of any codeword results in another codeword.

The Hamming distance between two words (of the same size) is the number of
differences between the corresponding bits. The Hamming distance can easily be
found if we apply the XOR operation on the two words and count the number of 1s
in the result. The minimum Hamming distance is the smallest Hamming distance
between all possible pairs in a set of words.

The single parity check uses one redundant bit for the whole data unit. In a two-
dimensional parity check, original data bits are organized in a table of rows and
columns. The parity bit is then calculated for each column and each row.

a. The only relationship between the size of the codeword and dataword is the one
based on the definition: n = k + r., where n is the size of the codeword, Kk is the
size of the dataword, and r is the size of the remainder.

b. The remainder is always one bit smaller than the divisor.

c. The degree of the generator polynomial is one less than the size of the divisor.
For example, the CRC-32 generator (with the polynomial of degree 32) uses a
33-bit divisor.
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d. The degree of the generator polynomial is the same as the size of the remainder
(length of checkbits). For example, CRC-32 (with the polynomial of degree 32)
creates a remainder of 32 bits.

. One’s complement arithmetic is used to add data items in checksum calculation.

In this arithmetic, when a number needs more than n bits, the extra bits are
wrapped and added to the number. In this arithmetic, the complement of a number
is made by inverting all bits.

. At least three types of error cannot be detected by the current checksum calcula-

tion. First, if two data items are swapped during transmission, the sum and the
checksum values will not change. Second, if the value of one data item is increased
(intentionally or maliciously) and the value of another one is decreased (intention-
ally or maliciously) the same amount, the sum and the checksum cannot detect
these changes. Third, if one or more data items is changed in such a way that the
change is a multiple of 2'° — 1, the sum or the checksum cannot detect the changes.

The value of a checksum can be all Os (in binary). This happens when the value of
the sum (after wrapping) becomes all 1s (in binary). It is almost impossible for the
value of a checksum to be all 1s. For this to happen, the value of the sum (after
wrapping) must be all 0s which means all data units must be Os.

Exercises

11. We can say that (vulnerable bits) = (data rate) x (burst duration)
vulnerable bits = (1,500) x (2 x 107%) = 3 bits
vulnerable bits = (12 x 10%) x (2 x 107%) = 24 bits

12.

13.

vulnerable bits = (100 x 10%) x (2 x 107%) =200 bits
vulnerable bits = (100 x 10° x (2 x 107%)  =200,000 bits

e TR

Comment: The last example shows how a noise of small duration can affect so
many bits if the data rate is high.

a. (10001) @®  (10000) = 00001
b. (10001) @®  (10001) = 00000
. (11100) @®  (00000) = 11100
d. (10011) ®  (11111) = 01100

Comment: The above shows three properties of the exclusive-or operation. First,
the result of XORing two equal patterns is an all-zero pattern (part b). Second, the
result of XORing of any pattern with an all-zero pattern is the original non-zero
pattern (part c). Third, the result of XORing of any pattern with an all-one pattern
is the complement of the original non-one pattern.

The codeword for dataword 10 is 101. This codeword will be changed to 010 if a
3-bit burst error occurs. This pattern is not one of the valid codewords, so the
receiver detects the error and discards the received pattern.
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15.

16.

17.

18.

19.

20.

The codeword for dataword 10 is 10101. This codeword will be changed to 01001
if a 3-bit burst error occurs. This pattern is not one of the valid codewords, so the
receiver discards the received pattern.

a. d (10000, 00000) =1

b. d (10101, 10000) = 2

c. d(1111,1111) =0

d. d (000, 000) =0

Comment: Part ¢ and d show that the distance between a codeword and itself is 0.

=s+1=2+1=3
=2t+1=2x2+1=5

a. For error detection — d,
b. For error correction — d;,
=s+1=3+1=4

=2t+1=2x2+1=5

For error section - d
For error correction — d
Therefore d . should be 5.

min
min

min

For error detection — d;,=s+1=6+1=7
For error correction — d;,=2t+1=2x2+1=5
Therefore d,;, should be 7.

01
. error
00
. error

We show that the exclusive-or of the second and the third code word
(01011) @ (10111) = 11100

o o oo

is not in the code. The code is not linear.
We check five random cases. All are in the code.

. (st) ® (2nd) = (2nd)
1. (2nd) ® (3th) = (4th)
1 (3rd) ® (4th) = (2nd)
V. (4th) ® (5th) = (8th)
V. (5th) ® (6th) = (2nd)

We show the dataword, the codeword, the corrupted codeword, and the interpreta-
tion of the receiver for each case:
a. Dataword: 0100 — Codeword: 0100011 — Corrupted: 0010011
This pattern is not in the table. — Correctly discarded.
b. Dataword: 0111 — Codeword: 0111001 — Corrupted: 1111000
This pattern is not in the table. — Correctly discarded.
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22.

23.

24.

25.

c

d

. Dataword: 1111 — Codeword: 1111111 — Corrupted: 0101110
This pattern is in the table. — Erroneously accepted as 0101.

. Dataword: 0000 — Codeword: 0000000 — Corrupted: 1101000
This pattern is in the table. - Erroneously accepted as 1101.

Comment: The above result does not mean that the code can never detect three

e

rrors. The last two cases show that it may happen that three errors remain unde-

tected.

We show the dataword, codeword, the corrupted codeword, the syndrome, and the
interpretation of each case:

a.

Dataword: 0100 — Codeword: 0100011 — Corrupted: 1100011 — s,8,S, = 110
Change b, (Table 10.5) — Corrected codeword: 0100011 — dataword: 0100
The dataword is correctly found.

. Dataword: 0111 — Codeword: 0111001 — Corrupted: 0011001 — s,5;5, = 011
Change b, (Table 10.5) — Corrected codeword: 0111001— dataword: 0111
The dataword is correctly found.

Dataword: 1111 — Codeword: 1111111 — Corrupted: 0111110 — s,5,5, = 111
Change b, (Table 10.5) — Corrected codeword: 0101110— dataword: 0101
The dataword is found, but it is incorrect. C(7,4) cannot correct two errors.
Dataword: 0000 — Codeword: 0000000 — Corrupted: 1100001 — s,s;S, = 100
Change g, (Table 10.5) — Corrected codeword: 1100101— dataword: 1100
The dataword is found, but it is incorrect. C(7,4) cannot correct three errors.

If we rotate 0101100 one bit, the result is 0010110, which is in the code. If we
rotate 0101100 two bits, the result is 0001011, which is in the code. And so on.

. The XORing of the two codewords (0010110) @ (1111111) = 1101001, which is
in the code.

We need to find k = 2™ -1 — m > 11. We use trial and error to find the right

a
a
b
C
d

nswer:
. Letm=1 k= 2"-1-m=2'-1-1=0 (not acceptable)
.Letm=2 k= 2"-1-m=22-1-2=1 (not acceptable)
. Letm=3 k= 2"-1-m=2%-1-3=4(notacceptable)
.Letm=4 k= 2"-1-m=2*-1-4=11 (acceptable)

Comment: The code is C(15, 11) with d,;, = 3.

o o o w
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COCHEXHEX+HD (X EXCHXx+ D) =X+ X
COCHEXZHEXHD) - (X XEEx+H D) =X
C+Hx)x (X +x2+x+ 1) =x"+x0+ x5+ x2
G+ X2+ x+ 1)/ (x2+1) =x+ 1 (remainder is 0)

. 101110 —» xX*+x3+ X%+ X
. 101110 — 101110000 (Three Os are added to the right)
XEx 0+ X3+ x2+x)=xE+x8+ x°+ x*
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27.

28.

29.

30.

d. 101110 — 10 (The four rightmost bits are deleted)

e. x4 x (x*+ x%+ x% + x) = x (Note that negative powers are deleted)

To detect single bit errors, a CRC generator must have at least two terms and the

coefficient of x° must be nonzero.

a. x*+x+1— It meets both critic.

b. x*+x? — It meets the first criteria, but not the second.

c. 1 — It meets the second criteria, but not the first.

d. x*+1— It meets both criteria.

CRC-8 generator is x® + x% + x + 1.

a. It has more than one term and the coefficient of x° is 1. It can detect a single-bit
error.

b. The polynomial is of degree 8, which means that the number of checkbits
(remainder) r = 8. It will detect all burst errors of size 8 or less.

c. Burst errors of size 9 are detected most of the time, but they slip by with proba-
bility (1/2)"* or (1/2)%~ 0.008. This means 8 out of 1000 burst errors of size 9
are left undetected.

d. Burst errors of size 15 are detected most of the time, but they slip by with prob-
ability (1/2)" or (1/2)®~ 0.004. This means 4 out of 1000 burst errors of size 15
are left undetected.

This generator is x¥ + x®+ X2 + x2 + x84+ x2 4+ x4+ x4+ x84 X"+ X3+ x + X2+ x + 1.

a. It has more than one term and the coefficient of x° is 1. It detects all single-bit
error.

b. The polynomial is of degree 32, which means that the number of checkbits
(remainder) r = 32. It will detect all burst errors of size 32 or less.

c. Burst errors of size 33 are detected most of the time, but they are slip by with
probability (1/2) or (1/2)**'x 465 x 107'2. This means 465 out of 10'% burst
errors of size 33 are left undetected.

d. Burst errors of size 55 are detected most of the time, but they are slipped with
probability (1/2)" or (1/2)*2 ~ 233 x 107'2. This means 233 out of 10'% burst
errors of size 55 are left undetected.

We need to add all bits modulo-2 (XORing). However, it is simpler to count the

number of 1s and make them even by adding a 0 or a 1. We have shown the parity

bit in the codeword in color and separate for emphasis.

Dataword Number of 1s Parity ~ Codeword
a. 1001011 - 4 (even) - 0 0 1001011
b. 0001100 - 2 (even) - 0 0 0001100
c. 1000000 - 1 (odd) - 1 1 1000000
d 1110111 - 6 (even) - 0 01110111

Figure 10.1 shows the calculation of the checksum both at the sender and receiver
site using binary division.



Figure 10.1 Solution to Exercise 30

Dataword |1 0 1 0 0 1 1 1] Codeword [1 0100111 000T1]
T 0 0 1T 1 1 1 Quotient 1T 00 1T 1 1 1Quotient
10111)101001110000|[10111)101001110001
Divisor 1011 ll Divisor lﬁllll
00111 00111
00000 00000
01111 01111
00000 00000
11111 11111
10111 10111
10000 10000
Sender 10111 Receiver 10111
01110 01110
00000 00000
11100 11100
1011 10111
110 10111
1011 10111
Remainder 0 0 0 1 Remainder (no error) 0000
Codeword|{1 01 00111 000 1] Dataword [1 0100111

31. Figure 10.2 shows the generation of the codeword at the sender and the checking

of the received codeword at the receiver using polynomial division.

Figure 10.2 Solution to Exercise 31

Dataword [x +x5+x2+ X + 1

Codeword |x1+x2+x6+x5+x* +1

X +x+x3+ X + 1 Quotient

Divisor
X+ x2+ X + 1) XX+
X'+ X2+ x8+x7

XX +x*

X HX XX+
X8 XXX
X7
X XX
X2+ xH+x3
X X2+ X
Xt XA+ X
Sender X xerx+l

Remainder 1

X +x+x3+ X+ 1 Quotient
Divisor

X4+ X2+ X + 1) x+x +
XX+ x8+x7

XS+x+x* + 1

XX+ X8+ x5 +x4
Xt +xCHx+x
X7

X XX+

X2+ x4+x3

x> +X+xI+X

i Xt ExIE X+
Receiver X i
Remainder 0

Codeword  [x"'+x°+x+x°+x* +1

Dataword [¥ +x°+x2+ X + 1




32. Figure 10.3 shows the four situations.

Figure 10.3 Solution to Exercise 32

a. Checksum at the sender site

b. Checksum at the receiver site (no error)

1 2 2 2 Carries 1 2 2 2 Carries
3 4 5 6 4 5 6
A B C C A B C C
0 2 B C 0 2 B C
E E E E E E E E
0 0 0 0 Checksum (initial) 2 E 3 2 Checksum (received
D 1 C C Sum (partial) F F F E  Sum (partial)
e e | —1
D 1 C D Sum F F F F Sum
2 E 3 2 Checksum (to send) 0 0 0 0 Checksum
2 3 3 3 Carries 1 2 2 2 Carries
3] 4 5 6 3 4 5 6
A B C E & Error here A B C E & Error here
0 2 B C 0 2 B A & Error here
E E E E E E E E
2 E 3 2 Checksum (received) 2 E 3 2 Checksum (received)
0 0 0 0 Sum (partial) F F E E  Sum (partial)
—>2 —1
0 0 0 2 Sum F F F F Sum
F F F D Checksum 0 0 0 0 C(Checksum

L
c. Checksum at the receiver site (one caught error)

p—
d. Checksum at the receiver site (two errors. but
not caught)

. In part a, we calculate the checksum to be sent (0x2E32)

. In part b, there is no error in transition. The receiver recalculates the checksum

to be all 0x0000. The receiver correctly assumes that there is no error.

. In part c, there is one single error in transition. The receiver calculates the
checksum to be OFFFD. The receiver correctly assumes that there is some error

and discards the packet.

. In part d, there are two errors that cancel the effect of each other. The receiver
calculates the checksum to be 0x0000. The receiver erroneously assumes that
there is no error and accepts the packet. This is an example that shows that the

checksum may slip in finding some types of errors.




33. Figure 10.4 shows the checksum to send (0x0000). This example shows that the
checksum can be all 0s. It can be all 1s only if all data items are all 0, which

means no data at all.

Figure 10.4 Solution to Exercise 33
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Checksum (to send)
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