Matematica Discreta e Logica Matematica Cl. 2 (matr. congrua 1 mod 3) A.A. 2011/2012

Appello del 17 Gennaio 2012 Compito B

Cognome e Nome	Matricola
1) Sia φ la seguente formula:	

$$((x \land y) \lor \neg z) \to (\neg x \land y).$$

- (i) Scrivere la tavola di verità di φ , dire se è soddisfacibile e, in caso affermativo, specificare le valutazioni delle variabili che la soddisfano.
- (ii)~ Utilizzando la tavola di verità, scrivere una formula in CNF o in DNF equivalente a $\varphi.$
- (iii) Trasformare φ in CNF o in DNF mediante equivalenze logiche.

N 1N.T	3. f . 1
Cognome e Nome	Matricola

- 2 Sia $\mathbb N$ l'insieme dei numeri naturali e sia x=(7,3) una valutazione delle variabili $v_1,\,v_2.$ Inoltre sia:
 - $P_1(a)$ interpretato come "a è primo";
 - $P_2(a,b)$ interpretato come "a è potenza di b";
 - $P_3(a,b)$ interpretato come " $a \ge b$ ".

Interpretare, nel dominio \mathbb{N} , mediante la valutazione e le interpretazioni assegnate, le seguenti formule e dire se sono vere o false motivando la risposta.

- (i) $\forall v(P_1(v) \to (\neg P_2(v, v_1)) \lor P_3(v, v_2)).$
- (ii) $\exists v(P_1(v) \to (\neg P_2(v, v_1)) \lor P_3(v, v_2)).$

Cognome e Nome			Matricola	
3) Si risolva in $\mathbb Z$ la seguente equazione congruenziale				
15	$\delta x \equiv 24$	mod 81		

4) Si consideri la relazione R sull'insieme $\mathbb Z$ dei numeri interi relativi definita, per ogni $a,b\in\mathbb Z$, da

$$aRb$$
 se e solo se esiste $k \in \mathbb{Z}$ tale che $x = y + 11k$.

Dimostrare che ${\cal R}$ è una relazione d'equivalenza. Determinare

- $i) [0]_R =$
- *ii)* $[1]_R =$
- *iii*) $[12]_R =$
- $iv) [22]_R =$

Stabilire, infine, se è compatibile con l'addizione e con la moltiplicazione in $\mathbb{Z}.$

5) Si consideri la seguente funzione

$$f: x \in \mathbb{Q} \to x^2 - 5x + 4 \in \mathbb{Q}.$$

Si determini

i)
$$f(\{-2, -\frac{1}{2}, 1, \frac{3}{8}, 4, 7\})$$

ii) $f^{-1}(\{-2, 0, \frac{1}{2}, \frac{3}{5}, 18\})$

ii)
$$f^{-1}(\{-2,0,\frac{1}{2},\frac{3}{5},18\})$$

Si stabilisca se f è iniettiva o suriettiva.

6) Considerare il sistema lineare reale

$$S: \left\{ \begin{array}{cccccc} -2y & +z & -2w & = & 1 \\ x & -y & -3z & +w & = & 1 \\ -x & +y & +2z & -w & = & 1 \end{array} \right.$$

e risolverlo con il metodo di Gauss.

7) Dimostrare che l'endomorfismo

$$f: \mathbb{R}^3 \ni \left(\begin{array}{c} x \\ y \\ z \end{array}\right) \longmapsto \left(\begin{array}{ccc} x & +y \\ x & +z \\ y & +z \end{array}\right) \in \mathbb{R}^3$$

è diagonalizzabile e determinarne una base diagonalizzante.

Cognome e Nome	Matricola
Cognomic Criomic	1/10/01/10/01/01/01/01/01/01/01/01/01/01

 $\bf 8)$ Dopo aver richiamato la definizione di base di uno spazio vettoriale, dimostrare che i vettori

$$\left(\begin{array}{c}1\\0\\0\end{array}\right), \left(\begin{array}{c}1\\1\\0\end{array}\right), \left(\begin{array}{c}1\\1\\1\end{array}\right),$$

formano una base di \mathbb{Q}^3 .