
Assuming all values are initially zero, what are the values of A and B after execut ing
this Verilog code inside an always block?

C=1;
A <= C;
B = C;

 C.5

Constructing a Basic Arithmetic Logic
Unit

The arithmetic logic unit (ALU) is the brawn of the computer, the device that
per forms the arithmetic operations like addition and subtraction or logical opera-
tions like AND and OR. This section constructs an ALU from four hardware
building blocks (AND and OR gates, inverters, and multiplexors) and illustrates
how combinational logic works. In the next section, we will see how addition can
be sped up through more clever designs.

Because the MIPS word is 32 bits wide, we need a 32-bit-wide ALU. Let’s assume
that we will connect 32 1-bit ALUs to create the desired ALU. We’ll there fore start
by constructing a 1-bit ALU.

A 1-Bit ALU
The logical operations are easiest, because they map directly onto the hardware
components in Figure C.2.1.

The 1-bit logical unit for AND and OR looks like Figure C.5.1. The multiplexor
on the right then selects a AND b or a OR b, depending on whether the value of
Operation is 0 or 1. The line that controls the multiplexor is shown in color to dis-
tinguish it from the lines containing data. Notice that we have renamed the con trol
and output lines of the multiplexor to give them names that refl ect the function of
the ALU.

The next function to include is addition. An adder must have two inputs for the
operands and a single-bit output for the sum. There must be a second output to
pass on the carry, called CarryOut. Since the CarryOut from the neighbor adder
must be included as an input, we need a third input. This input is called CarryIn.
Figure C.5.2 shows the inputs and the outputs of a 1-bit adder. Since we know what
addition is supposed to do, we can specify the outputs of this “black box” based on
its inputs, as Figure C.5.3 demonstrates.

We can express the output functions Carry Out and Sum as logical equations,
and these equations can in turn be implemented with logic gates. Let’s do Carry-
Out. Figure C.5.4 shows the values of the inputs when CarryOut is a 1.

We can turn this truth table into a logical equation:

CarryOut = (b · CarryIn) + (a · CarryIn) + (a · b) + (a · b · CarryIn)

ALU n. [Arthritic
Logic Unit or (rare)
Arithmetic Logic Unit]
A random-number
generator supplied as
standard with all
computer systems.

Stan Kelly-Bootle, The
Devil’s DP Dictionary,
1981

ALU n. [Arthritic
Logic Unit or (rare)
Arithmetic Logic Unit]
A random-number
generator supplied as
standard with all
computer systems.

Stan Kelly-Bootle, The
Devil’s DP Dictionary,
1981

Check
Yourself

C-26 Appendix C The Basics of Logic Design

 C.5 Constructing a Basic Arithmetic Logic Unit C-27

Operation

1

0

Result

a

b

FIGURE C.5.1 The 1-bit logical unit for AND and OR.

CarryIn

Sum

CarryOut

a

b

+

FIGURE C.5.2 A 1-bit adder. This adder is called a full adder; it is also called a (3,2) adder because it has
3 inputs and 2 outputs. An adder with only the a and b inputs is called a (2,2) adder or half-adder.

Inputs Outputs

Commentsa b CarryIn CarryOut Sum

0 0 0 0 0 0 + 0 + 0 = 00two
0 0 1 0 1 0 + 0 + 1 = 01two
0 1 0 0 1 0 + 1 + 0 = 01two
0 1 1 1 0 0 + 1 + 1 = 10two

1 0 0 0 1 1 + 0 + 0 = 01two

1 0 1 1 0 1 + 0 + 1 = 10two

1 1 0 1 0 1 + 1 + 0 = 10two

1 1 1 1 1 1 + 1 + 1 = 11two

FIGURE C.5.3 Input and output specifi cation for a 1-bit adder.

If a · b · CarryIn is true, then all of the other three terms must also be true, so we
can leave out this last term corresponding to the fourth line of the table. We can
thus simplify the equation to

CarryOut = (b · CarryIn) + (a · CarryIn) + (a · b)

Figure C.5.5 shows that the hardware within the adder black box for CarryOut
consists of three AND gates and one OR gate. The three AND gates correspond
exactly to the three parenthesized terms of the formula above for CarryOut, and
the OR gate sums the three terms.

Inputs

a b CarryIn

0 1 1

1 0 1

1 1 0

1 1 1

FIGURE C.5.4 Values of the inputs when CarryOut is a 1.

FIGURE C.5.5 Adder hardware for the CarryOut signal. The rest of the adder hardware is the logic
for the Sum output given in the equation on this page.

a

b

CarryIn

CarryOut

The Sum bit is set when exactly one input is 1 or when all three inputs are 1. The
Sum results in a complex Boolean equation (recall that

_
 a means NOT a):

Sum = (a ·
__

 b ·

 CarryIn) + (
_
 a · b ·

 CarryIn) + (

_
 a ·

__
 b · CarryIn) + (a · b · CarryIn)

The drawing of the logic for the Sum bit in the adder black box is left as an exercise
for the reader.

C-28 Appendix C The Basics of Logic Design

Figure C.5.6 shows a 1-bit ALU derived by combining the adder with the earlier
components. Sometimes designers also want the ALU to perform a few more sim-
ple operations, such as generating 0. The easiest way to add an operation is to
expand the multiplexor controlled by the Operation line and, for this example, to
connect 0 directly to the new input of that expanded multiplexor.

 C.5 Constructing a Basic Arithmetic Logic Unit C-29

a

b

CarryIn

CarryOut

Operation

1

0

21

Result

FIGURE C.5.6 A 1-bit ALU that performs AND, OR, and addition (see Figure C.5.5).

A 32-Bit ALU
Now that we have completed the 1-bit ALU, the full 32-bit ALU is created by con-
necting adjacent “black boxes.” Using xi to mean the ith bit of x, Fig ure C.5.7 shows
a 32-bit ALU. Just as a single stone can cause ripples to radiate to the shores of a
quiet lake, a single carry out of the least signifi cant bit (Result0) can ripple all the
way through the adder, causing a carry out of the most signifi cant bit (Result31).
Hence, the adder created by directly linking the carries of 1-bit adders is called a
ripple carry adder. We’ll see a faster way to connect the 1-bit adders starting on
page C-38.

Subtraction is the same as adding the negative version of an operand, and this
is how adders perform subtraction. Recall that the shortcut for negating a two’s
complement number is to invert each bit (sometimes called the one’s complement)
and then add 1. To invert each bit, we simply add a 2:1 multiplexor that chooses
between b and

__
 b , as Figure C.5.8 shows.

Suppose we connect 32 of these 1-bit ALUs, as we did in Figure C.5.7. The added
multiplexor gives the option of b or its inverted value, depending on Bin vert, but

this is only one step in negating a two’s complement number. Notice that the least
signifi cant bit still has a CarryIn signal, even though it’s unnecessary for addition.
What happens if we set this CarryIn to 1 instead of 0? The adder will then calculate
a + b + 1. By selecting the inverted version of b, we get exactly what we want:

a +
__

 b + 1 = a + (
__

 b + 1) = a + (−b) = a − b

The simplicity of the hardware design of a two’s complement adder helps explain
why two’s complement representation has become the universal standard for inte ger
computer arithmetic.

FIGURE C.5.7 A 32-bit ALU constructed from 32 1-bit ALUs. CarryOut of the less signifi cant bit
is connected to the CarryIn of the more signifi cant bit. This organization is called ripple carry.

a0

Operation

CarryIn
ALU0

CarryOut
b0

CarryIn

a1 CarryIn
ALU1

CarryOut
b1

Result0

Result1

a2 CarryIn
ALU2

CarryOut
b2

a31 CarryIn
ALU31

b31

Result2

Result31

...
...

...

C-30 Appendix C The Basics of Logic Design

 A MIPS ALU also needs a NOR function. Instead of adding a separate gate for
NOR, we can reuse much of the hardware already in the ALU, like we did for sub-
tract. The insight comes from the following truth about NOR:

(

 a + b) =
_
 a ·

__
 b

That is, NOT (a OR b) is equivalent to NOT a AND NOT b. This fact is called
DeMorgan’s theorem and is explored in the exercises in more depth.

Since we have AND and NOT b, we only need to add NOT a to the ALU.
Figure C.5.9 shows that change.

Tailoring the 32-Bit ALU to MIPS
These four operations—add, subtract, AND, OR—are found in the ALU of almost
every computer, and the operations of most MIPS instructions can be performed
by this ALU. But the design of the ALU is incomplete.

One instruction that still needs support is the set on less than instruction (slt).
Recall that the operation produces 1 if rs < rt, and 0 otherwise. Conse quently, slt will
set all but the least signifi cant bit to 0, with the least signifi cant bit set according to
the comparison. For the ALU to perform slt, we fi rst need to expand the three-input

 C.5 Constructing a Basic Arithmetic Logic Unit C-31

FIGURE C.5.8 A 1-bit ALU that performs AND, OR, and addition on a and b or a and
__
 b . By

selecting
__

 b (Binvert = 1) and setting CarryIn to 1 in the least signifi cant bit of the ALU, we get two’s comple ment
subtraction of b from a instead of addition of b to a.

Binvert

a

b

CarryIn

CarryOut

Operation

1

0

21

Result

1

0

multiplexor in Figure C.5.8 to add an input for the slt result. We call that new input
Less and use it only for slt.

The top drawing of Figure C.5.10 shows the new 1-bit ALU with the expanded
multiplexor. From the description of slt above, we must connect 0 to the Less
input for the upper 31 bits of the ALU, since those bits are always set to 0. What
remains to consider is how to compare and set the least signifi cant bit for set on less
than instructions.

What happens if we subtract b from a? If the difference is negative, then a < b
since

(a − b) < 0 ⇒ ((a − b) + b) < (0 + b)
 ⇒ a < b

We want the least signifi cant bit of a set on less than operation to be a 1 if a < b;
that is, a 1 if a − b is negative and a 0 if it’s positive. This desired result corresponds
exactly to the sign bit values: 1 means negative and 0 means positive. Following this
line of argument, we need only connect the sign bit from the adder output to the
least signifi cant bit to get set on less than.

Unfortunately, the Result output from the most signifi cant ALU bit in the top of
Figure C.5.10 for the slt operation is not the output of the adder; the ALU out put
for the slt operation is obviously the input value Less.

Binvert

a

b

CarryIn

CarryOut

Operation

1

0

2�

Result

1

0

Ainvert

1

0

FIGURE C.5.9 A 1-bit ALU that performs AND, OR, and addition on a and b or
__
 a and

__
 b . By

selecting
_
 a (Ainvert = 1) and

__
 b (Binvert = 1), we get a NOR b instead of a AND b.

C-32 Appendix C The Basics of Logic Design

 C.5 Constructing a Basic Arithmetic Logic Unit C-33

FIGURE C.5.10 (Top) A 1-bit ALU that performs AND, OR, and addition on a and b or b
__
 b , and

(bottom) a 1-bit ALU for the most signifi cant bit. The top drawing includes a direct input that is
connected to perform the set on less than operation (see Figure C.5.11); the bottom has a direct output from
the adder for the less than comparison called Set. (See Exercise C.24 at the end of this Appendix to see how
to calculate overfl ow with fewer inputs.)

Binvert

a

b

CarryIn

CarryOut

Operation

1

0

2�

Result

1

0

Ainvert

1

0

3Less

Binvert

a

b

CarryIn

Operation

1

0

2�

Result

1

0

3Less

Overflow
detection

Set

Overflow

Ainvert

1

0

Thus, we need a new 1-bit ALU for the most signifi cant bit that has an extra
output bit: the adder output. The bottom drawing of Figure C.5.10 shows the
design, with this new adder output line called Set, and used only for slt. As long as
we need a special ALU for the most signifi cant bit, we added the overfl ow detec tion
logic since it is also associated with that bit.

FIGURE C.5.11 A 32-bit ALU constructed from the 31 copies of the 1-bit ALU in the top of
Figure C.5.10 and one 1-bit ALU in the bottom of that fi gure. The Less inputs are connected to 0
except for the least signifi cant bit, which is connected to the Set output of the most signifi cant bit. If the ALU
performs a − b and we select the input 3 in the multiplexor in Figure C.5.10, then Result = 0 . . . 001 if a < b,
and Result = 0 . . . 000 otherwise.

...

a0

Operation

CarryIn
ALU0
Less

CarryOut

b0

CarryIn

a1 CarryIn
ALU1
Less

CarryOut

b1

Result0

Result1

a2 CarryIn
ALU2
Less

CarryOut

b2

a31 CarryIn
ALU31
Less

b31

Result2

Result31

...
...

...

Binvert

...

Ainvert

0

0

0 Overflow

...

Set

CarryIn

C-34 Appendix C The Basics of Logic Design

Alas, the test of less than is a little more complicated than just described because
of overfl ow, as we explore in the exercises. Figure C.5.11 shows the 32-bit ALU.

Notice that every time we want the ALU to subtract, we set both CarryIn and
Binvert to 1. For adds or logical operations, we want both control lines to be 0. We
can therefore simplify control of the ALU by combining the CarryIn and Binvert to
a single control line called Bnegate.

To further tailor the ALU to the MIPS instruction set, we must support condi-
tional branch instructions. These instructions branch either if two registers are
equal or if they are unequal. The easiest way to test equality with the ALU is to
subtract b from a and then test to see if the result is 0, since

(a − b = 0) ⇒ a = b

Thus, if we add hardware to test if the result is 0, we can test for equality. The
simplest way is to OR all the outputs together and then send that signal through
an inverter:

Zero = (Result31 + Result30 + . . . + Result2 + Result1 + Result0)

Figure C.5.12 shows the revised 32-bit ALU. We can think of the combination of
the 1-bit Ainvert line, the 1-bit Binvert line, and the 2-bit Operation lines as 4-bit
control lines for the ALU, telling it to perform add, subtract, AND, OR, or set on
less than. Figure C.5.13 shows the ALU control lines and the corresponding ALU
operation.

Finally, now that we have seen what is inside a 32-bit ALU, we will use the uni-
versal symbol for a complete ALU, as shown in Figure C.5.14.

Defi ning the MIPS ALU in Verilog
Figure C.5.15 shows how a combinational MIPS ALU might be specifi ed in Ver ilog;
such a specifi cation would probably be compiled using a standard parts library that
provided an adder, which could be instantiated. For completeness, we show the
ALU control for MIPS in Figure C.5.16, which is used in Chapter 4, where we build
a Verilog version of the MIPS datapath.

The next question is, “How quickly can this ALU add two 32-bit operands?” We
can determine the a and b inputs, but the CarryIn input depends on the operation
in the adjacent 1-bit adder. If we trace all the way through the chain of dependen-
cies, we connect the most signifi cant bit to the least signifi cant bit, so the most
signifi cant bit of the sum must wait for the sequential evaluation of all 32 1-bit
adders. This sequential chain reaction is too slow to be used in time-critical hard-
ware. The next section explores how to speed-up addition. This topic is not crucial
to understanding the rest of the appendix and may be skipped.

 C.5 Constructing a Basic Arithmetic Logic Unit C-35

...

a0

Operation

CarryIn
ALU0
Less

CarryOut

b0

a1 CarryIn
ALU1
Less

CarryOut

b1

Result0

Result1

a2 CarryIn
ALU2
Less

CarryOut

b2

a31 CarryIn
ALU31
Less

b31

Result2

Result31

...
...

...

Bnegate

...

Ainvert

0

0

0 Overflow

...

Set

CarryIn
...

...
Zero

FIGURE C.5.12 The fi nal 32-bit ALU. This adds a Zero detector to Figure C.5.11.

FIGURE C.5.13 The values of the three ALU control lines, Bnegate, and Operation, and
the corresponding ALU operations.

ALU control lines Function

0000 AND

0001 OR

0010 add

0110 subtract

0111 set on less than

1100 NOR

C-36 Appendix C The Basics of Logic Design

ALU

a

ALU operation

b

CarryOut

Zero

Result

Overflow

FIGURE C.5.14 The symbol commonly used to represent an ALU, as shown in Figure
C.5.12. This symbol is also used to represent an adder, so it is normally labeled either with ALU or Adder.

module MIPSALU (ALUctl, A, B, ALUOut, Zero);
 input [3:0] ALUctl;
 input [31:0] A,B;
 output reg [31:0] ALUOut;
 output Zero;

 assign Zero = (ALUOut==0); //Zero is true if ALUOut is 0
 always @(ALUctl, A, B) begin //reevaluate if these change
 case (ALUctl)
 0: ALUOut <= A & B;
 1: ALUOut <= A | B;
 2: ALUOut <= A + B;
 6: ALUOut <= A - B;
 7: ALUOut <= A < B ? 1 : 0;
 12: ALUOut <= ~(A | B); // result is nor
 default: ALUOut <= 0;
 endcase
 end
endmodule

FIGURE C.5.15 A Verilog behavioral defi nition of a MIPS ALU.

 C.5 Constructing a Basic Arithmetic Logic Unit C-37

