Cognome:	Nome:	\dots $Classe:$ $Matricola:$ \dots	
----------	-------	--	--

(Scrivere tutti i dati richiesti e trascrivere gli stessi su ogni foglio dello svolgimento) (Barrare la seguente casella per pubblicare il solo numero di matricola \square) (I quesiti contrassegnati con (F) sono facoltativi)

Analisi Numerica A.A. 2009-2010

Quesito A (punti 3)

Si desidera calcolare una tavola logaritmica di 10 valori di $\log_{10}(x)$ per $x=0.1,0.2,0.3,\ldots 1$, utilizzando il seguente codice MATLAB/Octave:

```
x=0.1;
while x~=1
  x
  y=log10(x)
  x=x+0.1;
end
```

- 1. Trascrivere il codice sopra riportato in MATLAB/Octave ed eseguirlo. Scrivere i 10 valori di x e $\log_{10}(x)$ in una tabella in formato "short".
- 2. Scrivere una definizione di precisione macchina per numeri in virgola mobile e discutere le conseguenze sulle operazioni al calcolatore.
- 3. Discutere eventuali conseguenze della rappresentazione in virgola mobile in relazione al punto 1.

Quesito B (punti 9) È dato il sistema di equazioni Ax = b, con:

$$A = \begin{pmatrix} -6 & 2 & 3 & -4 \\ -2 & -7 & 7 & 2 \\ 2 & 2 & -4 & -1 \\ -2 & 2 & 4 & 8 \end{pmatrix}, \quad b = \begin{pmatrix} -1 + \alpha \\ 3 \\ 5 \\ 1 \end{pmatrix}$$

(dove α è l'ultima cifra del numero di matricola).

1. Applicare il metodo SOR alla matrice A e trovare il parametro ottimale ω che massimizza la velocità di convergenza. Si riporta la matrice di iterazione:

$$B_{SOR} = (D + \omega L)^{-1} [(1 - \omega)D - \omega U]$$

dove D è la parte diagonale di A, L la triangolare inferiore, U la superiore, per entrambe esclusa la diagonale. La formula iterativa:

$$x^{(k+1)} = B_{SOR}x^{(k)} + \omega(D + \omega L)^{-1}b$$

- 2. Con il parametro ottimale, calcolare la soluzione con accuratezze relativa 10^{-7} , eps (scrivere soluzioni, stime dell'errore e numero di iterazioni).
- 3. Confrontare le soluzioni ottenute con quella che si ottiene col comando Matlab "\" e calcolare l' errore vero per ciascuna accuratezza. (scrivere i risultati in una opportuna tabella).
- 4. Enunciare una condizione necessaria e sufficiente per la convergenza di un metodo iterativo.
- 5. Calcolare le soluzioni con il metodo di Jacobi con le stesse accuratezze richieste al punto 2 e confrontare i risultati.
- 6. (F + 2 punti) Risolvere il sistema con il metodo di eliminazione di Gauss con pivot totale e confrontare il risultato con quello al punto 3.
- 7. Qual'è l'utilità del pivoting nel metodo di eliminazione di Gauss?

Quesito C (punti 6) Delle misure effettuate su un esperimento, forniscono i seguenti valori di punti (ascissa, ordinata): (0, -0.21), (0.57, 5.14), (1.14, 7.42), (1.71, 20.52), (2.28, 27.51), (2.86, 44.87), (3.43, 62.21), (4, 81.13). Riportare i punti su un piano cartesiano.

- 1. Utilizzare il metodo dei minimi quadrati per calcololare i polinomi di approssimazione di grado 1, 2 e 3 sui punti dati. (Scrivere esplicitamente i polinomi con i coefficienti in formato "short").
- 2. Disegnare i tre polinomi (utilizzare un colore diverso per polinomio) ed i punti dati. Commentare le approsimazioni ottenute con i polinomi. [chiamare il docente per la verifica a video dei grafici]
- 3. Illustrare brevemente il metodo dei minimi quadrati.
- 4. Disegnare la 'spline' sui punti dati e commentare anche in relazione al punto 2. [chiamare il docente per la verifica a video dei grafici]

Quesito D (punti 6) Sono date le matrici

$$A = \begin{pmatrix} 22 & 4 & -24 \\ 16 & 10 & -24 \\ 16 & 4 & -18 \end{pmatrix} \quad B = \begin{pmatrix} 13 & 0 & -14 \\ -14 & -1 & 14 \\ 7 & 0 & -8 \end{pmatrix}$$

- 1. Determinare gli autovalori di modulo massimo e minimo con accuratezza relativa pari a 10^{-3} , 10^{-9} , eps, utilizzando il metodo delle potenze.
- 2. Per ciascuna accuratezza riportare in una tabella: l'autovalore, la stima dell'errore (assoluto o relativo), il numero di iterazioni effettuate. Confrontare i risultati con quelli ottenuti con un comando Matlab.
- 3. Scrivere la definizione di autovalore e autovettore di una matrice.
- 4. Illustrare brevemente il metodo delle potenze, e discutere la velocità di convergenza.

Quesito E (punti 6) Calcolare l' integrale definito $\int_{-\pi/2}^{\pi/2} \frac{\cos(x^2)}{5+x^4} dx$, con accuratezza assoluta pari a: 10^{-4} , 10^{-9} , 10^{-14} , utilizzando l'algoritmo adattivo di Cavalieri–Simpson.

- 1. Riportare in tabella il valore dell' integrale, la stima dell' errore assoluto che viene restituito dall'algoritmo e l'errore vero. (per trovare il risultato esatto avvelersi del comando Q = QUADL(FUN,A,B,TOL)).
- 2. Confrontare i valori di stima di errore assoluto ed errore vero, e commentare.
- 3. (F + 2 punti) Ripetere i punti precedenti con l'algoritmo di quadratura dei trapezi non-adattiva, e confrontare i risultati.
- 4. Illustrare brevemente le formule di Newton–Cotes, spiegando il significato dei pesi, e gli eventuali problemi di convergenza.

Esempio tabella:

Accuratezza richiesta	Valore dell' integrale	Stima errore assoluto	Errore vero assoluto